समस्या दर्ज करें...
प्री-कैलकुलस उदाहरण
चरण 1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 2
असमानता के दोनों पक्षों में जोड़ें.
चरण 3
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4
चरण 4.1
असमानता के दोनों पक्षों से घटाएं.
चरण 4.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.2.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.2
को से विभाजित करें.
चरण 4.2.3
दाईं ओर को सरल बनाएंं.
चरण 4.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6
चरण 6.1
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 6.2
समीकरण के प्रत्येक पक्ष को सरल करें.
चरण 6.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 6.2.2
बाईं ओर को सरल बनाएंं.
चरण 6.2.2.1
को सरल करें.
चरण 6.2.2.1.1
घातांक को में गुणा करें.
चरण 6.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 6.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 6.2.2.1.2
सरल करें.
चरण 6.2.3
दाईं ओर को सरल बनाएंं.
चरण 6.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 6.3
के लिए हल करें.
चरण 6.3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.3.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 6.3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2.2
बाईं ओर को सरल बनाएंं.
चरण 6.3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.2.1.2
को से विभाजित करें.
चरण 6.3.2.3
दाईं ओर को सरल बनाएंं.
चरण 6.3.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 7
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस मामले में, कोई वास्तविक संख्या नहीं है जो व्यंजक को परिभाषित करती है.
कोई हल नहीं