प्री-कैलकुलस उदाहरण

अनंतस्‍पर्शी रेखाओं का पता लगाओ f(x)=(3^x+2)/(e^(2x)+1)
चरण 1
पता करें कि व्यंजक/अभिव्यक्ति कहाँ अपरिभाषित है.
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 2
ऊर्ध्वाधर अनंतस्पर्शी अनंत असंबद्धता वाले क्षेत्रों में पाए जाते हैं.
कोई ऊर्ध्वाधर अनंतस्पर्शी नहीं
चरण 3
हॉरिजॉन्टल ऐसिम्प्टोट पता करने के लिए का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.1.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.2
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 3.3
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.3.2
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.4
चूँकि घातांक की ओर एप्रोच करता है, इसलिए मान की ओर एप्रोच करता है.
चरण 3.5
सीमा का मूल्यांकन करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.5.2
उत्तर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.2.1
और जोड़ें.
चरण 3.5.2.2
और जोड़ें.
चरण 3.5.2.3
को से विभाजित करें.
चरण 4
हॉरिजॉन्टल ऐसिम्प्टोट की सूची बनाएंं:
चरण 5
कोई तिरछी अनंतस्पर्शी नहीं है क्योंकि न्यूमेरेटर की डिग्री भाजक की डिग्री से कम या उसके बराबर है.
कोई तिरछी अनंतस्पर्शी नहीं
चरण 6
यह सभी अनंतस्पर्शी का सेट है.
कोई ऊर्ध्वाधर अनंतस्पर्शी नहीं
हॉरिजॉन्टल ऐसिम्प्टोट:
कोई तिरछी अनंतस्पर्शी नहीं
चरण 7