प्री-एलजेब्रा उदाहरण

चरण 1
को अलग-अलग लिखें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 1.2
असमानता को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
असमानता के दोनों पक्षों से घटाएं.
चरण 1.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 1.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.2.2.1.2
को से विभाजित करें.
चरण 1.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.3
उस हिस्से में जहां गैर-ऋणात्मक है, निरपेक्ष मान हटा दें.
चरण 1.4
दूसरे अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, यह पता लगाएं कि निरपेक्ष मान का आंतरिक भाग ऋणात्मक है.
चरण 1.5
असमानता को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
असमानता के दोनों पक्षों से घटाएं.
चरण 1.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 1.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.2.2.1.2
को से विभाजित करें.
चरण 1.5.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.5.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 1.6
उस हिस्से में जहां ऋणात्मक है, निरपेक्ष मान हटा दें और से गुणा करें.
चरण 1.7
अलग-अलग रूप में लिखें.
चरण 1.8
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.8.1
वितरण गुणधर्म लागू करें.
चरण 1.8.2
को से गुणा करें.
चरण 1.8.3
को से गुणा करें.
चरण 2
को हल करें जब हो.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
वाले सभी पदों को असमानता के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1.1
असमानता के दोनों पक्षों से घटाएं.
चरण 2.1.1.2
में से घटाएं.
चरण 2.1.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 2.1.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.2.1.2
को से विभाजित करें.
चरण 2.1.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.3.1
को से विभाजित करें.
चरण 2.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 3
को हल करें जब हो.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
वाले सभी पदों को असमानता के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1.1
असमानता के दोनों पक्षों में जोड़ें.
चरण 3.1.1.2
और जोड़ें.
चरण 3.1.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.1.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.2.1.2
को से विभाजित करें.
चरण 3.1.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.3.1
को से विभाजित करें.
चरण 3.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 4
हलों का संघ ज्ञात करें.
चरण 5