समस्या दर्ज करें...
प्री-एलजेब्रा उदाहरण
चरण 1
असमानता के दोनों पक्षों से घटाएं.
चरण 2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
चरण 3
चरण 3.1
बाईं ओर को सरल बनाएंं.
चरण 3.1.1
करणी से पदों को बाहर निकालें.
चरण 3.2
दाईं ओर को सरल बनाएंं.
चरण 3.2.1
को सरल करें.
चरण 3.2.1.1
में से का गुणनखंड करें.
चरण 3.2.1.1.1
में से का गुणनखंड करें.
चरण 3.2.1.1.2
में से का गुणनखंड करें.
चरण 3.2.1.1.3
में से का गुणनखंड करें.
चरण 3.2.1.2
को के रूप में फिर से लिखें.
चरण 3.2.1.3
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3.2.1.4
को के रूप में फिर से लिखें.
चरण 3.2.1.4.1
को के रूप में फिर से लिखें.
चरण 3.2.1.4.2
को के रूप में फिर से लिखें.
चरण 3.2.1.4.3
कोष्ठक लगाएं.
चरण 3.2.1.5
करणी से पदों को बाहर निकालें.
चरण 3.2.1.6
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 3.2.1.7
एक का कोई भी घात एक होता है.
चरण 4
चरण 4.1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 4.2
उस हिस्से में जहां गैर-ऋणात्मक है, निरपेक्ष मान हटा दें.
चरण 4.3
का डोमेन ज्ञात करें और के साथ प्रतिच्छेदन ज्ञात करें.
चरण 4.3.1
का डोमेन ज्ञात करें.
चरण 4.3.1.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.3.1.2
के लिए हल करें.
चरण 4.3.1.2.1
को सरल करें.
चरण 4.3.1.2.1.1
FOIL विधि का उपयोग करके का प्रसार करें.
चरण 4.3.1.2.1.1.1
वितरण गुणधर्म लागू करें.
चरण 4.3.1.2.1.1.2
वितरण गुणधर्म लागू करें.
चरण 4.3.1.2.1.1.3
वितरण गुणधर्म लागू करें.
चरण 4.3.1.2.1.2
समान पदों को सरल और संयोजित करें.
चरण 4.3.1.2.1.2.1
प्रत्येक पद को सरल करें.
चरण 4.3.1.2.1.2.1.1
को से गुणा करें.
चरण 4.3.1.2.1.2.1.2
को से गुणा करें.
चरण 4.3.1.2.1.2.1.3
को से गुणा करें.
चरण 4.3.1.2.1.2.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 4.3.1.2.1.2.1.5
घातांक जोड़कर को से गुणा करें.
चरण 4.3.1.2.1.2.1.5.1
ले जाएं.
चरण 4.3.1.2.1.2.1.5.2
को से गुणा करें.
चरण 4.3.1.2.1.2.2
और जोड़ें.
चरण 4.3.1.2.1.2.3
और जोड़ें.
चरण 4.3.1.2.2
असमानता के दोनों पक्षों से घटाएं.
चरण 4.3.1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.3.1.2.3.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.3.1.2.3.2
बाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.3.1.2.3.2.2
को से विभाजित करें.
चरण 4.3.1.2.3.3
दाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.3.3.1
को से विभाजित करें.
चरण 4.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
चरण 4.3.1.2.5
समीकरण को सरल करें.
चरण 4.3.1.2.5.1
बाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.5.1.1
करणी से पदों को बाहर निकालें.
चरण 4.3.1.2.5.2
दाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.5.2.1
का कोई भी मूल होता है.
चरण 4.3.1.2.6
को अलग-अलग लिखें.
चरण 4.3.1.2.6.1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 4.3.1.2.6.2
उस हिस्से में जहां गैर-ऋणात्मक है, निरपेक्ष मान हटा दें.
चरण 4.3.1.2.6.3
दूसरे अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, यह पता लगाएं कि निरपेक्ष मान का आंतरिक भाग ऋणात्मक है.
चरण 4.3.1.2.6.4
उस हिस्से में जहां ऋणात्मक है, निरपेक्ष मान हटा दें और से गुणा करें.
चरण 4.3.1.2.6.5
अलग-अलग रूप में लिखें.
चरण 4.3.1.2.7
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.3.1.2.8
को हल करें जब हो.
चरण 4.3.1.2.8.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.3.1.2.8.1.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.3.1.2.8.1.2
बाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.8.1.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.3.1.2.8.1.2.2
को से विभाजित करें.
चरण 4.3.1.2.8.1.3
दाईं ओर को सरल बनाएंं.
चरण 4.3.1.2.8.1.3.1
को से विभाजित करें.
चरण 4.3.1.2.8.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.3.1.2.9
हलों का संघ ज्ञात करें.
चरण 4.3.1.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4.3.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.4
दूसरे अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, यह पता लगाएं कि निरपेक्ष मान का आंतरिक भाग ऋणात्मक है.
चरण 4.5
उस हिस्से में जहां ऋणात्मक है, निरपेक्ष मान हटा दें और से गुणा करें.
चरण 4.6
का डोमेन ज्ञात करें और के साथ प्रतिच्छेदन ज्ञात करें.
चरण 4.6.1
का डोमेन ज्ञात करें.
चरण 4.6.1.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4.6.1.2
के लिए हल करें.
चरण 4.6.1.2.1
को सरल करें.
चरण 4.6.1.2.1.1
FOIL विधि का उपयोग करके का प्रसार करें.
चरण 4.6.1.2.1.1.1
वितरण गुणधर्म लागू करें.
चरण 4.6.1.2.1.1.2
वितरण गुणधर्म लागू करें.
चरण 4.6.1.2.1.1.3
वितरण गुणधर्म लागू करें.
चरण 4.6.1.2.1.2
समान पदों को सरल और संयोजित करें.
चरण 4.6.1.2.1.2.1
प्रत्येक पद को सरल करें.
चरण 4.6.1.2.1.2.1.1
को से गुणा करें.
चरण 4.6.1.2.1.2.1.2
को से गुणा करें.
चरण 4.6.1.2.1.2.1.3
को से गुणा करें.
चरण 4.6.1.2.1.2.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 4.6.1.2.1.2.1.5
घातांक जोड़कर को से गुणा करें.
चरण 4.6.1.2.1.2.1.5.1
ले जाएं.
चरण 4.6.1.2.1.2.1.5.2
को से गुणा करें.
चरण 4.6.1.2.1.2.2
और जोड़ें.
चरण 4.6.1.2.1.2.3
और जोड़ें.
चरण 4.6.1.2.2
असमानता के दोनों पक्षों से घटाएं.
चरण 4.6.1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.6.1.2.3.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.6.1.2.3.2
बाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.6.1.2.3.2.2
को से विभाजित करें.
चरण 4.6.1.2.3.3
दाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.3.3.1
को से विभाजित करें.
चरण 4.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
चरण 4.6.1.2.5
समीकरण को सरल करें.
चरण 4.6.1.2.5.1
बाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.5.1.1
करणी से पदों को बाहर निकालें.
चरण 4.6.1.2.5.2
दाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.5.2.1
का कोई भी मूल होता है.
चरण 4.6.1.2.6
को अलग-अलग लिखें.
चरण 4.6.1.2.6.1
पहले अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, पता लगाएं कि निरपेक्ष मान के अंदर गैर-ऋणात्मक है.
चरण 4.6.1.2.6.2
उस हिस्से में जहां गैर-ऋणात्मक है, निरपेक्ष मान हटा दें.
चरण 4.6.1.2.6.3
दूसरे अलग-अलग भाग के लिए अंतराल ज्ञात करने के लिए, यह पता लगाएं कि निरपेक्ष मान का आंतरिक भाग ऋणात्मक है.
चरण 4.6.1.2.6.4
उस हिस्से में जहां ऋणात्मक है, निरपेक्ष मान हटा दें और से गुणा करें.
चरण 4.6.1.2.6.5
अलग-अलग रूप में लिखें.
चरण 4.6.1.2.7
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.6.1.2.8
को हल करें जब हो.
चरण 4.6.1.2.8.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.6.1.2.8.1.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.6.1.2.8.1.2
बाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.8.1.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.6.1.2.8.1.2.2
को से विभाजित करें.
चरण 4.6.1.2.8.1.3
दाईं ओर को सरल बनाएंं.
चरण 4.6.1.2.8.1.3.1
को से विभाजित करें.
चरण 4.6.1.2.8.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.6.1.2.9
हलों का संघ ज्ञात करें.
चरण 4.6.1.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4.6.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 4.7
अलग-अलग रूप में लिखें.
चरण 5
और का प्रतिच्छेदन ज्ञात करें.
कोई हल नहीं
चरण 6
चरण 6.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 6.1.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 6.1.2
बाईं ओर को सरल बनाएंं.
चरण 6.1.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 6.1.2.2
को से विभाजित करें.
चरण 6.1.3
दाईं ओर को सरल बनाएंं.
चरण 6.1.3.1
ऋणात्मक को के भाजक से हटा दें.
चरण 6.1.3.2
को के रूप में फिर से लिखें.
चरण 6.1.3.3
को से गुणा करें.
चरण 6.2
और का प्रतिच्छेदन ज्ञात करें.
चरण 7
हलों का संघ ज्ञात करें.
चरण 8