समस्या दर्ज करें...
प्री-एलजेब्रा उदाहरण
चरण 1
चरण 1.1
में से घटाएं.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.3
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2
चरण 2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
चरण 2.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.5
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 2.6
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 2.7
का गुणनखंड ही है.
बार आता है.
चरण 2.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 2.9
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 3
चरण 3.1
के प्रत्येक पद को से गुणा करें.
चरण 3.2
बाईं ओर को सरल बनाएंं.
चरण 3.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2.2
गुणा करें.
चरण 3.2.2.1
और को मिलाएं.
चरण 3.2.2.2
को से गुणा करें.
चरण 3.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3.2
व्यंजक को फिर से लिखें.
चरण 3.3
दाईं ओर को सरल बनाएंं.
चरण 3.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.1
में से का गुणनखंड करें.
चरण 3.3.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1.3
व्यंजक को फिर से लिखें.
चरण 4
चरण 4.1
समीकरण को के रूप में फिर से लिखें.
चरण 4.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.1.2
को से विभाजित करें.
चरण 4.2.3
दाईं ओर को सरल बनाएंं.
चरण 4.2.3.1
को से गुणा करें.
चरण 4.2.3.2
भाजक को मिलाएं और सरल करें.
चरण 4.2.3.2.1
को से गुणा करें.
चरण 4.2.3.2.2
को के घात तक बढ़ाएं.
चरण 4.2.3.2.3
को के घात तक बढ़ाएं.
चरण 4.2.3.2.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.2.3.2.5
और जोड़ें.
चरण 4.2.3.2.6
को के रूप में फिर से लिखें.
चरण 4.2.3.2.6.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 4.2.3.2.6.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.2.3.2.6.3
और को मिलाएं.
चरण 4.2.3.2.6.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.3.2.6.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.3.2.6.4.2
व्यंजक को फिर से लिखें.
चरण 4.2.3.2.6.5
घातांक का मान ज्ञात करें.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: