प्री-एलजेब्रा उदाहरण

घातांकी फलन ज्ञात कीजिये (-3,-8)
चरण 1
एक घातीय फलन पता करने के लिए, , जिसमें बिंदु है, फलन में को बिंदु के मान पर सेट करें और को बिंदु के मान पर सेट करें.
चरण 2
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.3
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
के प्रत्येक पद को से गुणा करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.1.2
व्यंजक को फिर से लिखें.
चरण 2.5
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.3.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.3.1.1
में से का गुणनखंड करें.
चरण 2.5.3.1.2
को के रूप में फिर से लिखें.
चरण 2.5.3.1.3
में से का गुणनखंड करें.
चरण 2.5.3.2
को के रूप में फिर से लिखें.
चरण 2.5.3.3
को के रूप में फिर से लिखें.
चरण 2.5.3.4
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के योग का उपयोग करके गुणनखंड करें, जहाँ और .
चरण 2.5.3.5
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.3.5.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.3.5.1.1
उत्पाद नियम को पर लागू करें.
चरण 2.5.3.5.1.2
को के घात तक बढ़ाएं.
चरण 2.5.3.5.1.3
को से गुणा करें.
चरण 2.5.3.5.1.4
को से गुणा करें.
चरण 2.5.3.5.1.5
एक का कोई भी घात एक होता है.
चरण 2.5.3.5.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.5.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.5.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.1
को के बराबर सेट करें.
चरण 2.5.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.5.2.2.2.1.2
को से विभाजित करें.
चरण 2.5.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.5.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.5.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.1
को के बराबर सेट करें.
चरण 2.5.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.5.6.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.5.6.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.3.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.3.1.2.1
को से गुणा करें.
चरण 2.5.6.2.3.1.2.2
को से गुणा करें.
चरण 2.5.6.2.3.1.3
में से घटाएं.
चरण 2.5.6.2.3.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.7
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.3.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.3.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.3.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.3.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.3.2
को से गुणा करें.
चरण 2.5.6.2.3.3
को सरल करें.
चरण 2.5.6.2.4
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.4.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.4.1.2.1
को से गुणा करें.
चरण 2.5.6.2.4.1.2.2
को से गुणा करें.
चरण 2.5.6.2.4.1.3
में से घटाएं.
चरण 2.5.6.2.4.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.7
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.4.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.4.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.4.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.4.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.4.2
को से गुणा करें.
चरण 2.5.6.2.4.3
को सरल करें.
चरण 2.5.6.2.4.4
को में बदलें.
चरण 2.5.6.2.5
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.5.1.1
को के घात तक बढ़ाएं.
चरण 2.5.6.2.5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.5.1.2.1
को से गुणा करें.
चरण 2.5.6.2.5.1.2.2
को से गुणा करें.
चरण 2.5.6.2.5.1.3
में से घटाएं.
चरण 2.5.6.2.5.1.4
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.5
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.6
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.7
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.6.2.5.1.7.1
में से का गुणनखंड करें.
चरण 2.5.6.2.5.1.7.2
को के रूप में फिर से लिखें.
चरण 2.5.6.2.5.1.8
करणी से पदों को बाहर निकालें.
चरण 2.5.6.2.5.1.9
को के बाईं ओर ले जाएं.
चरण 2.5.6.2.5.2
को से गुणा करें.
चरण 2.5.6.2.5.3
को सरल करें.
चरण 2.5.6.2.5.4
को में बदलें.
चरण 2.5.6.2.6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 2.5.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 2.6
काल्पनिक घटकों वाले सभी मानों को हटा दें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
कोई काल्पनिक घटक नहीं हैं. अंतिम उत्तर में जोड़ें.
एक वास्तविक संख्या है
चरण 2.6.2
अक्षर एक काल्पनिक घटक का प्रतिनिधित्व करता है और यह वास्तविक संख्या नहीं है. अंतिम उत्तर में न जोड़ें.
एक वास्तविक संख्या नहीं है
चरण 2.6.3
अक्षर एक काल्पनिक घटक का प्रतिनिधित्व करता है और यह वास्तविक संख्या नहीं है. अंतिम उत्तर में न जोड़ें.
एक वास्तविक संख्या नहीं है
चरण 2.6.4
अंतिम उत्तर उन मानों की सूची है जिनमें काल्पनिक घटक नहीं हैं.
चरण 3
प्रत्येक संभावित घातीय फलन को पता करने के लिए के लिए प्रत्येक मान को फलन में वापस प्रतिस्थापित करें.