प्री-एलजेब्रा उदाहरण

चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
को विषम भिन्न में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
एक मिश्रित संख्या उसके पूर्ण और भिन्नात्मक भागों का योग होती है.
चरण 1.1.1.2
और जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.2.1
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 1.1.1.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.1.2.3
और जोड़ें.
चरण 1.1.2
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
और को मिलाएं.
चरण 1.1.2.2
को के बाईं ओर ले जाएं.
चरण 2
लघुत्तम सामान्य भाजक से गुणा करें, और फिर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
वितरण गुणधर्म लागू करें.
चरण 2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.2
में से का गुणनखंड करें.
चरण 2.2.1.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.4
व्यंजक को फिर से लिखें.
चरण 2.2.2
को से गुणा करें.
चरण 2.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.3.2
व्यंजक को फिर से लिखें.
चरण 3
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 4
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
को के घात तक बढ़ाएं.
चरण 5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
को से गुणा करें.
चरण 5.1.2.2
को से गुणा करें.
चरण 5.1.3
में से घटाएं.
चरण 5.1.4
को के रूप में फिर से लिखें.
चरण 5.1.5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 5.2
को से गुणा करें.
चरण 5.3
को सरल करें.
चरण 6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: