समस्या दर्ज करें...
लीनियर एलजेब्रा उदाहरण
[1-1-2-1-1-3+k][1−1−2−1−1−3+k]
चरण 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
चरण 2
चरण 2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
चरण 2.1.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[1-1-2-1+1⋅1-1-1-3+k-2][1−1−2−1+1⋅1−1−1−3+k−2]
चरण 2.1.2
R2R2 को सरल करें.
[1-1-20-2k-5][1−1−20−2k−5]
[1-1-20-2k-5][1−1−20−2k−5]
चरण 2.2
Multiply each element of R2R2 by -12−12 to make the entry at 2,22,2 a 11.
चरण 2.2.1
Multiply each element of R2R2 by -12−12 to make the entry at 2,22,2 a 11.
[1-1-2-12⋅0-12⋅-2-12(k-5)][1−1−2−12⋅0−12⋅−2−12(k−5)]
चरण 2.2.2
R2R2 को सरल करें.
[1-1-201-k2+52][1−1−201−k2+52]
[1-1-201-k2+52][1−1−201−k2+52]
चरण 2.3
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
चरण 2.3.1
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
[1+0-1+1⋅1-2-k2+5201-k2+52][1+0−1+1⋅1−2−k2+5201−k2+52]
चरण 2.3.2
R1R1 को सरल करें.
[10-k2+1201-k2+52][10−k2+1201−k2+52]
[10-k2+1201-k2+52][10−k2+1201−k2+52]
[10-k2+1201-k2+52][10−k2+1201−k2+52]
चरण 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
चरण 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1