फाइनाइट मैथ उदाहरण

प्रांत ज्ञात कीजिऐ e^(2 (1/( का प्राकृतिक लघुगणक -x))+3) का वर्गमूल
चरण 1
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित है, तर्क को से बड़ा में सेट करें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
असमानता के दोनों पक्षों से घटाएं.
चरण 2.1.2
दोनों पक्षों को से गुणा करें.
चरण 2.1.3
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.3.1.2
व्यंजक को फिर से लिखें.
चरण 2.1.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.1.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.1.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.4.2.2.1.2
को से विभाजित करें.
चरण 2.1.4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.4.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 2.3
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.3.2.1.2
सरल करें.
चरण 2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1.1
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 2.3.3.1.1.2
उत्पाद नियम को पर लागू करें.
चरण 2.3.3.1.2
को के घात तक बढ़ाएं.
चरण 2.3.3.1.3
को से गुणा करें.
चरण 2.3.3.1.4
एक का कोई भी घात एक होता है.
चरण 2.3.3.1.5
को के घात तक बढ़ाएं.
चरण 2.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.4.2.2
को से विभाजित करें.
चरण 2.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.3.1
ऋणात्मक को के भाजक से हटा दें.
चरण 2.4.3.2
को के रूप में फिर से लिखें.
चरण 2.5
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 2.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 2.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.5.2.2.2
को से विभाजित करें.
चरण 2.5.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.3.1
को से विभाजित करें.
चरण 2.5.3
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 2.5.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.1
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 2.5.4.2
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.5.4.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.5.4.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.4.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 2.5.4.2.2.1.2
सरल करें.
चरण 2.5.4.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 2.5.4.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.4.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.5.4.3.2.2
को से विभाजित करें.
चरण 2.5.4.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.4.3.3.1
को से विभाजित करें.
चरण 2.5.5
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 2.6
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 2.7
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 2.7.1.2
मूल असमानता में को से बदलें.
चरण 2.7.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 2.7.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 2.7.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 2.7.2.2
मूल असमानता में को से बदलें.
चरण 2.7.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 2.7.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 2.7.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 2.7.3.2
मूल असमानता में को से बदलें.
चरण 2.7.3.3
बाईं ओर दाईं ओर के बराबर नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 2.7.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
गलत
सही
सही
गलत
चरण 2.8
हल में सभी सच्चे अंतराल होते हैं.
या
या
चरण 3
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के प्रत्येक पद को से भाग दें. असमानता के दोनों पक्षों को ऋणात्मक मान से गुणा या विभाजित करते समय, असमानता चिह्न की दिशा को पलटें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.2.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से विभाजित करें.
चरण 5
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
समीकरण के बाईं पक्ष की ओर मूलांक निकालने के लिए, समीकरण के दोनों पक्षों का वर्ग करें.
चरण 6.2
समीकरण के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 6.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 6.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 6.2.2.1.2
सरल करें.
चरण 6.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 6.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 6.3.2.2
को से विभाजित करें.
चरण 6.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.3.1
को से विभाजित करें.
चरण 7
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 8