फाइनाइट मैथ उदाहरण

因数定理を用いて +x=-3が因数であるかを判断する f(x)=x^3+6x^2+11x+6 , x=-3
,
चरण 1
पर फलन का मूल्यांकन करने के लिए लंबा भाग समस्या सेट करें.
चरण 2
कृत्रिम विभाजन का उपयोग करके विभाजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
भाजक और भाजक को निरूपित करने वाली संख्याओं को एक विभाजन-सदृश विन्यास में रखें.
  
चरण 2.2
भाज्य में पहली संख्या को परिणाम क्षेत्र (क्षैतिज रेखा के नीचे) की पहली स्थिति में रखा गया है.
  
चरण 2.3
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
  
चरण 2.4
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
  
चरण 2.5
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
  
चरण 2.6
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
  
चरण 2.7
परिणाम में नवीनतम प्रविष्टि को भाजक से गुणा करें और के परिणाम को भाज्य में अगले पद के अंतर्गत जोड़े.
 
चरण 2.8
गुणन का गुणनफल और लाभांश से संख्या जोड़ें और परिणाम को परिणाम रेखा पर अगली स्थिति में रखें.
 
चरण 2.9
अंतिम को छोड़कर सभी संख्याएँ भागफल बहुपद के गुणांक बन जाती हैं. परिणाम रेखा में अंतिम मान शेष है.
चरण 2.10
भागफल बहुपद को सरल करें.
चरण 3
कृत्रिम विभाजन का शेष भाग शेष प्रमेय पर आधारित परिणाम है.
चरण 4
चूंकि शेषफल शून्य के बराबर है, एक गुणनखंड है.
एक गुणनखंड है
चरण 5