फाइनाइट मैथ उदाहरण

चरण 1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
फिर से लिखें.
चरण 1.2
शून्य जोड़कर सरल करें.
चरण 1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
में से का गुणनखंड करें.
चरण 1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.3
व्यंजक को फिर से लिखें.
चरण 1.4
और को मिलाएं.
चरण 1.5
को से गुणा करें.
चरण 1.6
और को मिलाएं.
चरण 1.7
को के घात तक बढ़ाएं.
चरण 1.8
को के घात तक बढ़ाएं.
चरण 1.9
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.10
और जोड़ें.
चरण 1.11
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.11.1
में से का गुणनखंड करें.
चरण 1.11.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.11.2.1
में से का गुणनखंड करें.
चरण 1.11.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.11.2.3
व्यंजक को फिर से लिखें.
चरण 1.11.2.4
को से विभाजित करें.
चरण 2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
वितरण गुणधर्म लागू करें.
चरण 2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.3
व्यंजक को फिर से लिखें.
चरण 2.3
को से गुणा करें.
चरण 2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
में से का गुणनखंड करें.
चरण 2.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.3
व्यंजक को फिर से लिखें.
चरण 3
समीकरण के दोनों पक्षों से घटाएं.
चरण 4
समीकरण के दोनों पक्षों से घटाएं.
चरण 5
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
में से का गुणनखंड करें.
चरण 5.2
में से का गुणनखंड करें.
चरण 5.3
में से का गुणनखंड करें.
चरण 5.4
में से का गुणनखंड करें.
चरण 5.5
में से का गुणनखंड करें.
चरण 6
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2.1.2
को से विभाजित करें.
चरण 6.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
को से विभाजित करें.
चरण 7
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 8
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को के घात तक बढ़ाएं.
चरण 9.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.2.1
को से गुणा करें.
चरण 9.1.2.2
को से गुणा करें.
चरण 9.1.3
और जोड़ें.
चरण 9.2
को से गुणा करें.
चरण 10
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 11
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: