फाइनाइट मैथ उदाहरण

xを解きます x-2=0 का प्राकृतिक लघुगणक x)^2- का प्राकृतिक लघुगणक (
चरण 1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 1.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 1.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 1.3
की सभी घटनाओं को से बदलें.
चरण 2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के बराबर सेट करें.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.2
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.2.3
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.2.4
समीकरण को के रूप में फिर से लिखें.
चरण 4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.2
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 4.2.3
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 4.2.4
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 4.2.4.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: