समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
चरण 1
को के रूप में फिर से लिखें.
चरण 2
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 3
चरण 3.1
का मान ज्ञात करें.
चरण 4
चरण 4.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
चरण 4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
चरण 4.3.1
को से विभाजित करें.
चरण 5
तीसरे और चौथे चतुर्थांश में ज्या फलन ऋणात्मक होता है. दूसरा हल पता करने के लिए, संदर्भ कोण पता करने के लिए हल को से घटाएं. इसके बाद, तीसरे चतुर्थांश में हल पता करने के लिए इस संदर्भ कोण को में जोड़ें.
चरण 6
चरण 6.1
में से घटाएं.
चरण 6.2
का परिणामी कोण धनात्मक है, से कम है और के साथ कोटरमिनल है.
चरण 6.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 6.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2
बाईं ओर को सरल बनाएंं.
चरण 6.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.2
को से विभाजित करें.
चरण 6.3.3
दाईं ओर को सरल बनाएंं.
चरण 6.3.3.1
को से विभाजित करें.
चरण 7
चरण 7.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 7.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 7.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 7.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.4.2
को से विभाजित करें.
चरण 8
चरण 8.1
धनात्मक कोण ज्ञात करने के लिए को में जोड़ें.
चरण 8.2
दशमलव सन्निकटन से बदलें.
चरण 8.3
में से घटाएं.
चरण 8.4
नए कोणों की सूची बनाएंं.
चरण 9
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए