समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
चरण 1
चरण 1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 2
चरण 2.1
को के रूप में फिर से लिखें.
चरण 2.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3
चरण 3.1
को के रूप में फिर से लिखें.
चरण 3.2
को के रूप में फिर से लिखें.
चरण 3.3
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3.4
को से गुणा करें.
चरण 4
चरण 4.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
चरण 4.1.1
में से का गुणनखंड करें.
चरण 4.1.2
को जोड़ के रूप में फिर से लिखें
चरण 4.1.3
वितरण गुणधर्म लागू करें.
चरण 4.1.4
को से गुणा करें.
चरण 4.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 4.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 4.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 4.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 5
चरण 5.1
में से का गुणनखंड करें.
चरण 5.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3
व्यंजक को फिर से लिखें.
चरण 6
को से गुणा करें.
चरण 7
चरण 7.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2
व्यंजक को फिर से लिखें.
चरण 8
चरण 8.1
पदों को पुन: व्यवस्थित करें
चरण 8.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 8.3
व्यंजक को फिर से लिखें.