फाइनाइट मैथ उदाहरण

चरण 1
असमानता के दोनों पक्षों से घटाएं.
चरण 2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
सामान्य भाजक पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
को भाजक वाली भिन्न के रूप में लिखें.
चरण 2.1.2
को से गुणा करें.
चरण 2.1.3
को से गुणा करें.
चरण 2.1.4
को भाजक वाली भिन्न के रूप में लिखें.
चरण 2.1.5
को से गुणा करें.
चरण 2.1.6
को से गुणा करें.
चरण 2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.3
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
वितरण गुणधर्म लागू करें.
चरण 2.3.2
को से गुणा करें.
चरण 2.3.3
वितरण गुणधर्म लागू करें.
चरण 2.3.4
को से गुणा करें.
चरण 2.4
में से घटाएं.
चरण 2.5
में से घटाएं.
चरण 2.6
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.1
में से का गुणनखंड करें.
चरण 2.6.1.2
में से का गुणनखंड करें.
चरण 2.6.1.3
में से का गुणनखंड करें.
चरण 2.6.1.4
में से का गुणनखंड करें.
चरण 2.6.1.5
में से का गुणनखंड करें.
चरण 2.6.2
पदों को पुन: व्यवस्थित करें
चरण 2.7
में से का गुणनखंड करें.
चरण 2.8
में से का गुणनखंड करें.
चरण 2.9
में से का गुणनखंड करें.
चरण 2.10
को के रूप में फिर से लिखें.
चरण 2.11
में से का गुणनखंड करें.
चरण 2.12
को के रूप में फिर से लिखें.
चरण 2.13
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3
प्रत्येक गुणनखंड को के बराबर रखकर और उसे हल करके ऐसे सभी मान पता करें जहाँ व्यंजक नकारात्मक से सकारात्मक में परिवर्तित होता है.
चरण 4
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 5
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.1
को के घात तक बढ़ाएं.
चरण 6.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1.2.1
को से गुणा करें.
चरण 6.1.2.2
को से गुणा करें.
चरण 6.1.3
में से घटाएं.
चरण 6.2
को से गुणा करें.
चरण 7
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 8
समीकरण के दोनों पक्षों से घटाएं.
चरण 9
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 10
को के रूप में फिर से लिखें.
चरण 11
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 11.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 11.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 11.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 12
प्रत्येक गुणनखंड के लिए उन मानों को प्राप्त करने के लिए हल करें जहां निरपेक्ष मान व्यंजक ऋणात्मक से धनात्मक हो जाता है.
चरण 13
हल समेकित करें.
चरण 14
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 15
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 15.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 15.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.1.2
मूल असमानता में को से बदलें.
चरण 15.1.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 15.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.2.2
मूल असमानता में को से बदलें.
चरण 15.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 15.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 15.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.3.2
मूल असमानता में को से बदलें.
चरण 15.3.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 15.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
गलत
सही
गलत
चरण 16
हल में सभी सच्चे अंतराल होते हैं.
चरण 17
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 18