फाइनाइट मैथ उदाहरण

प्रांत और परिसर का पता लगाए y = x^3+3x^2+3x- के वर्गमूल x^3+3x^2+3x के वर्गमूल
चरण 1
रेडिकैंड को में से बड़ा या उसके बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां परिभाषित किया गया है.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
असमानता को समीकरण में बदलें.
चरण 2.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.2
में से का गुणनखंड करें.
चरण 2.2.3
में से का गुणनखंड करें.
चरण 2.2.4
में से का गुणनखंड करें.
चरण 2.2.5
में से का गुणनखंड करें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.5.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.5.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.3.1.1
को के घात तक बढ़ाएं.
चरण 2.5.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.3.1.2.1
को से गुणा करें.
चरण 2.5.2.3.1.2.2
को से गुणा करें.
चरण 2.5.2.3.1.3
में से घटाएं.
चरण 2.5.2.3.1.4
को के रूप में फिर से लिखें.
चरण 2.5.2.3.1.5
को के रूप में फिर से लिखें.
चरण 2.5.2.3.1.6
को के रूप में फिर से लिखें.
चरण 2.5.2.3.2
को से गुणा करें.
चरण 2.5.2.4
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.4.1.1
को के घात तक बढ़ाएं.
चरण 2.5.2.4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.4.1.2.1
को से गुणा करें.
चरण 2.5.2.4.1.2.2
को से गुणा करें.
चरण 2.5.2.4.1.3
में से घटाएं.
चरण 2.5.2.4.1.4
को के रूप में फिर से लिखें.
चरण 2.5.2.4.1.5
को के रूप में फिर से लिखें.
चरण 2.5.2.4.1.6
को के रूप में फिर से लिखें.
चरण 2.5.2.4.2
को से गुणा करें.
चरण 2.5.2.4.3
को में बदलें.
चरण 2.5.2.4.4
को के रूप में फिर से लिखें.
चरण 2.5.2.4.5
में से का गुणनखंड करें.
चरण 2.5.2.4.6
में से का गुणनखंड करें.
चरण 2.5.2.4.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.5.2.5
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.5.1.1
को के घात तक बढ़ाएं.
चरण 2.5.2.5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.5.1.2.1
को से गुणा करें.
चरण 2.5.2.5.1.2.2
को से गुणा करें.
चरण 2.5.2.5.1.3
में से घटाएं.
चरण 2.5.2.5.1.4
को के रूप में फिर से लिखें.
चरण 2.5.2.5.1.5
को के रूप में फिर से लिखें.
चरण 2.5.2.5.1.6
को के रूप में फिर से लिखें.
चरण 2.5.2.5.2
को से गुणा करें.
चरण 2.5.2.5.3
को में बदलें.
चरण 2.5.2.5.4
को के रूप में फिर से लिखें.
चरण 2.5.2.5.5
में से का गुणनखंड करें.
चरण 2.5.2.5.6
में से का गुणनखंड करें.
चरण 2.5.2.5.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.5.2.6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 2.7
हल में सभी सच्चे अंतराल होते हैं.
चरण 3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 4
श्रेणी सभी मान्य मानों का सेट है. परिसर पता करने के लिए ग्राफ का प्रयोग करें.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 5
डोमेन और परिसर निर्धारित करें.
डोमेन:
परिसर:
चरण 6