फाइनाइट मैथ उदाहरण

आव्यूह समीकरण को हल कीजिये [[3,5],[7,12]]x=[[2,-1],[3,2]]
चरण 1
Find the inverse of .
और स्टेप्स के लिए टैप करें…
चरण 1.1
The inverse of a matrix can be found using the formula where is the determinant.
चरण 1.2
Find the determinant.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 1.2.2
सारणिक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1.1
को से गुणा करें.
चरण 1.2.2.1.2
को से गुणा करें.
चरण 1.2.2.2
में से घटाएं.
चरण 1.3
Since the determinant is non-zero, the inverse exists.
चरण 1.4
Substitute the known values into the formula for the inverse.
चरण 1.5
को से विभाजित करें.
चरण 1.6
मैट्रिक्स के प्रत्येक अवयव से को गुणा करें.
चरण 1.7
मैट्रिक्स में प्रत्येक तत्व को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.7.1
को से गुणा करें.
चरण 1.7.2
को से गुणा करें.
चरण 1.7.3
को से गुणा करें.
चरण 1.7.4
को से गुणा करें.
चरण 2
Multiply both sides by the inverse of .
चरण 3
समीकरण को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
चरण 3.1.2
पहले मैट्रिक्स में प्रत्येक पंक्ति को दूसरे मैट्रिक्स में प्रत्येक कॉलम से गुणा करें.
चरण 3.1.3
सभी व्यंजकों को गुणा करके आव्यूह के प्रत्येक अवयव को सरल करें.
चरण 3.2
Multiplying the identity matrix by any matrix is the matrix itself.
चरण 3.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
चरण 3.3.2
पहले मैट्रिक्स में प्रत्येक पंक्ति को दूसरे मैट्रिक्स में प्रत्येक कॉलम से गुणा करें.
चरण 3.3.3
सभी व्यंजकों को गुणा करके आव्यूह के प्रत्येक अवयव को सरल करें.