फाइनाइट मैथ उदाहरण

任意の変数yの形で解く -4x-16y-2z=18 , -2x-8y-z=9
,
Step 1
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
समीकरण के दोनों पक्षों में जोड़ें.
समीकरण के दोनों पक्षों में जोड़ें.
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
के प्रत्येक पद को से विभाजित करें.
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
उभयनिष्ठ गुणनखंड रद्द करें.
को से विभाजित करें.
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
भिन्न के सामने ऋणात्मक ले जाएँ.
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
ऋणात्मक को के भाजक से हटा दें.
को के रूप में फिर से लिखें.
को से गुणा करें.
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
भिन्न के सामने ऋणात्मक ले जाएँ.
Step 2
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
को सरल करें.
और स्टेप्स के लिए टैप करें…
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
वितरण गुणधर्म लागू करें.
सरल करें.
और स्टेप्स के लिए टैप करें…
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
को से गुणा करें.
को से गुणा करें.
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
में से का गुणनखंड करें.
उभयनिष्ठ गुणनखंड रद्द करें.
व्यंजक को फिर से लिखें.
को से गुणा करें.
को से गुणा करें.
में विपरीत पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
में से घटाएं.
और जोड़ें.
में से घटाएं.
और जोड़ें.
चूंकि , समीकरण हमेशा सत्य होगा.
हमेशा सत्य
हमेशा सत्य
Step 3
सरलीकृत प्रणाली समीकरणों की मूल प्रणाली का स्वेच्छ हल है.
हमेशा सत्य
Step 4
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
ले जाएं.
हमेशा सत्य
हमेशा सत्य