समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
चरण 1
चरण 1.1
को से गुणा करें.
चरण 1.2
जोड़ना.
चरण 2
वितरण गुणधर्म लागू करें.
चरण 3
चरण 3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2
व्यंजक को फिर से लिखें.
चरण 3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.2
में से का गुणनखंड करें.
चरण 3.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.4
व्यंजक को फिर से लिखें.
चरण 3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2
व्यंजक को फिर से लिखें.
चरण 3.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1
में से का गुणनखंड करें.
चरण 3.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.3
व्यंजक को फिर से लिखें.
चरण 4
चरण 4.1
को के बाईं ओर ले जाएं.
चरण 4.2
को के रूप में फिर से लिखें.
चरण 5
चरण 5.1
कोष्ठक हटा दें.
चरण 5.2
एक सामान्य भाजक के साथ को भिन्न के रूप में लिखें.
चरण 5.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6
चरण 6.1
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
चरण 6.1.1
पदों को पुनर्व्यवस्थित करें.
चरण 6.1.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 6.1.3
बहुपद को फिर से लिखें.
चरण 6.1.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 6.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 7
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 8
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
के लिए LCM (लघुत्तम समापवर्तक) का मान ज्ञात करने के चरण हैं:
1. सांख्यिक भाग के लिए LCM ज्ञात कीजिए.
2. चर भाग के लिए LCM ज्ञात कीजिए.
3. यौगिक चर भाग के लिए LCM ज्ञात कीजिए
4. प्रत्येक LCM को एक साथ गुणा करें.
चरण 9
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 10
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 11
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 12
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 13
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 14
का गुणनखंड ही है.
बार आता है.
चरण 15
का गुणनखंड ही है.
बार आता है.
चरण 16
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 17
को से गुणा करें.
चरण 18
का गुणनखंड ही है.
बार आता है.
चरण 19
का गुणनखंड ही है.
बार आता है.
चरण 20
का LCM (न्यूनतम सामान्य गुणक) सभी गुणनखंडों को किसी भी पद में सबसे बड़ी संख्या में गुणा करने का परिणाम है.
चरण 21
कुछ संख्याओं का लघुत्तम समापवर्तक वह सबसे छोटी संख्या होती है, जिसके गुणनखंड होते हैं.