समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
चरण 1
चरण 1.1
एक असतत यादृच्छिक चर अलग-अलग मानों का एक सेट लेता है (जैसे , , ...). इसका प्रायिकता वितरण प्रत्येक संभावित मान के लिए एक प्रायिकता निर्दिष्ट करता है. प्रत्येक के लिए, प्रायिकता , और समावेशी के बीच आती है और सभी संभावित मानों के लिए प्रायिकता का योग के बराबर होता है.
1. प्रत्येक , के लिए.
2. .
चरण 1.2
, से कम या उसके बराबर नहीं है, जो प्रायिकता वितरण की पहले गुणधर्म को पूरा नहीं करता है.
, से कम या उसके बराबर नहीं है
चरण 1.3
, से कम या उसके बराबर नहीं है, जो प्रायिकता वितरण की पहले गुणधर्म को पूरा नहीं करता है.
, से कम या उसके बराबर नहीं है
चरण 1.4
, और के बीच है, जो प्रायिकता वितरण के पहले गुण से मिलता है
, और के बीच में है
चरण 1.5
, और के बीच है, जो प्रायिकता वितरण के पहले गुण से मिलता है
, और के बीच में है
चरण 1.6
is not greater than or equal to , which doesn't meet the first property of the probability distribution.
is not greater than or equal to
चरण 1.7
is not greater than or equal to , which doesn't meet the first property of the probability distribution.
is not greater than or equal to
चरण 1.8
is not greater than or equal to , which doesn't meet the first property of the probability distribution.
is not greater than or equal to
चरण 1.9
प्रायिकता , सभी मानों को मिलाकर, और के बीच नहीं आती है, जो प्रायिकता वितरण की पहले गुणधर्म को पूरा नहीं करती है.
तालिका प्रायिकता वितरण के दो गुणों को पूरी नहीं करती है
तालिका प्रायिकता वितरण के दो गुणों को पूरी नहीं करती है
चरण 2
तालिका प्रायिकता वितरण के दो गुणों को पूरी नहीं करती है, जिसका अर्थ है कि दी गई तालिका का उपयोग करके अपेक्षा माध्य नहीं पता किया जा सकता है.
अपेक्षित माध्य नहीं मिल रहा है