फाइनाइट मैथ उदाहरण

Cramer-क्रेमर नियम से आव्यूह का प्रयोग करके हल कीजिये x+2y=4 , 2x+6y=5
,
चरण 1
मैट्रिक्स प्रारूप में समीकरणों की प्रणाली का प्रतिनिधित्व करें.
चरण 2
Find the determinant of the coefficient matrix .
और स्टेप्स के लिए टैप करें…
चरण 2.1
Write in determinant notation.
चरण 2.2
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 2.3
सारणिक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
को से गुणा करें.
चरण 2.3.1.2
को से गुणा करें.
चरण 2.3.2
में से घटाएं.
चरण 3
Since the determinant is not , the system can be solved using Cramer's Rule.
चरण 4
Find the value of by Cramer's Rule, which states that .
और स्टेप्स के लिए टैप करें…
चरण 4.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
चरण 4.2
Find the determinant.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 4.2.2
सारणिक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
को से गुणा करें.
चरण 4.2.2.1.2
को से गुणा करें.
चरण 4.2.2.2
में से घटाएं.
चरण 4.3
Use the formula to solve for .
चरण 4.4
Substitute for and for in the formula.
चरण 4.5
को से विभाजित करें.
चरण 5
Find the value of by Cramer's Rule, which states that .
और स्टेप्स के लिए टैप करें…
चरण 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
चरण 5.2
Find the determinant.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 5.2.2
सारणिक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1.1
को से गुणा करें.
चरण 5.2.2.1.2
को से गुणा करें.
चरण 5.2.2.2
में से घटाएं.
चरण 5.3
Use the formula to solve for .
चरण 5.4
Substitute for and for in the formula.
चरण 5.5
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6
समीकरणों की प्रणाली के हल की सूची बनाएंं.