समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
, ,
चरण 1
मैट्रिक्स प्रारूप में समीकरणों की प्रणाली का प्रतिनिधित्व करें.
चरण 2
चरण 2.1
Write in determinant notation.
चरण 2.2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
चरण 2.2.1
Consider the corresponding sign chart.
चरण 2.2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
चरण 2.2.3
The minor for is the determinant with row and column deleted.
चरण 2.2.4
Multiply element by its cofactor.
चरण 2.2.5
The minor for is the determinant with row and column deleted.
चरण 2.2.6
Multiply element by its cofactor.
चरण 2.2.7
The minor for is the determinant with row and column deleted.
चरण 2.2.8
Multiply element by its cofactor.
चरण 2.2.9
Add the terms together.
चरण 2.3
को से गुणा करें.
चरण 2.4
का मान ज्ञात करें.
चरण 2.4.1
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 2.4.2
सारणिक को सरल करें.
चरण 2.4.2.1
प्रत्येक पद को सरल करें.
चरण 2.4.2.1.1
को से गुणा करें.
चरण 2.4.2.1.2
को से गुणा करें.
चरण 2.4.2.2
में से घटाएं.
चरण 2.5
का मान ज्ञात करें.
चरण 2.5.1
मैट्रिक्स का निर्धारक सूत्र का उपयोग करके पता किया जा सकता है.
चरण 2.5.2
सारणिक को सरल करें.
चरण 2.5.2.1
प्रत्येक पद को सरल करें.
चरण 2.5.2.1.1
को से गुणा करें.
चरण 2.5.2.1.2
को से गुणा करें.
चरण 2.5.2.2
में से घटाएं.
चरण 2.6
सारणिक को सरल करें.
चरण 2.6.1
प्रत्येक पद को सरल करें.
चरण 2.6.1.1
को से गुणा करें.
चरण 2.6.1.2
को से गुणा करें.
चरण 2.6.2
में से घटाएं.
चरण 2.6.3
और जोड़ें.
चरण 3
Since the determinant is , the system cannot be solved using Cramer's Rule.