फाइनाइट मैथ उदाहरण

प्रांत ज्ञात कीजिऐ f(x)=6 ((x^2+2)/(x^2-2))^(1/3) का प्राकृतिक लघुगणक
चरण 1
भिन्नात्मक घातांक वाले व्यंजकों को करणी में बदलें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
घातांक को मूलक के रूप में फिर से लिखने के लिए नियम लागू करें.
चरण 1.2
किसी भी चीज़ को तक बढ़ा दिया जाता है, वह आधार ही होता है.
चरण 2
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित है, तर्क को से बड़ा में सेट करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
चरण 3.2
असमानता के प्रत्येक पक्ष को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.2.2.1.2
सरल करें.
चरण 3.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
प्रत्येक गुणनखंड को के बराबर रखकर और उसे हल करके ऐसे सभी मान पता करें जहाँ व्यंजक नकारात्मक से सकारात्मक में परिवर्तित होता है.
चरण 3.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.3.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.4.1
को के रूप में फिर से लिखें.
चरण 3.3.4.2
को के रूप में फिर से लिखें.
चरण 3.3.4.3
को के रूप में फिर से लिखें.
चरण 3.3.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.3.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.3.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.6
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3.7
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.3.8
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.8.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.3.8.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.3.8.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.3.9
प्रत्येक गुणनखंड के लिए उन मानों को प्राप्त करने के लिए हल करें जहां निरपेक्ष मान व्यंजक ऋणात्मक से धनात्मक हो जाता है.
चरण 3.3.10
हल समेकित करें.
चरण 3.4
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.4.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.4.2.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.4.2.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.4.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 3.5
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 3.6
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.6.1.2
मूल असमानता में को से बदलें.
चरण 3.6.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 3.6.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.6.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.6.2.2
मूल असमानता में को से बदलें.
चरण 3.6.2.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 3.6.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.6.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.6.3.2
मूल असमानता में को से बदलें.
चरण 3.6.3.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 3.6.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
गलत
सही
सही
गलत
सही
चरण 3.7
हल में सभी सच्चे अंतराल होते हैं.
या
या
चरण 4
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 5
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 5.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 5.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 6
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 7