कैलकुलस उदाहरण

सीमा का मूल्यांकन करें xe^(-x) का लिमिट, जब x infinity की ओर एप्रोच करता हो
limxxe-x
चरण 1
xe-x को xex के रूप में फिर से लिखें.
limxxex
चरण 2
एल 'हॉस्पिटल' का नियम लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
limxxlimxex
चरण 2.1.2
एक बहुपद की अनंत की सीमा जिसका प्रमुख गुणांक धनात्मक है, अनंत है.
limxex
चरण 2.1.3
चूँकि घातांक x की ओर एप्रोच करता है, इसलिए मान ex की ओर एप्रोच करता है.
चरण 2.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
limxxex=limxddx[x]ddx[ex]
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
limxddx[x]ddx[ex]
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि ddx[xn] nxn-1 है, जहाँ n=1 है.
limx1ddx[ex]
चरण 2.3.3
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि ddx[ax] axln(a) है, जहाँ a=e है.
limx1ex
limx1ex
limx1ex
चरण 3
चूँकि इसका न्यूमेरेटर एक वास्तविक संख्या तक पहुँचता है, जबकि इसका भाजक असीम होता है, इसलिए भिन्न 1ex 0 के करीब पहुंच जाता है.
0
limxxe-x
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]