कैलकुलस उदाहरण

समाकल का मान ज्ञात कीजिये 10e^(-1/2t) बटे t का समाकलन 0 है जिसकी सीमा 6 है
चरण 1
और को मिलाएं.
चरण 2
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 3
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
को अवकलित करें.
चरण 3.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.1.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.1.4
को से गुणा करें.
चरण 3.2
के लिए में निचली सीमा को प्रतिस्थापित करें.
चरण 3.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
को से विभाजित करें.
चरण 3.3.2
को से गुणा करें.
चरण 3.4
के लिए में ऊपरी सीमा को प्रतिस्थापित करें.
चरण 3.5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.5.1
को से विभाजित करें.
चरण 3.5.2
को से गुणा करें.
चरण 3.6
और के लिए पाए गए मानों का उपयोग निश्चित समाकल का मूल्यांकन करने के लिए किया जाएगा.
चरण 3.7
, और समाकलन की नई सीमाओं का उपयोग करके समस्या को फिर से लिखें.
चरण 4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 4.2
से भाग देने के लिए भिन्न के प्रतिलोम से गुणा करें.
चरण 4.3
को से गुणा करें.
चरण 4.4
को से गुणा करें.
चरण 5
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 6
को से गुणा करें.
चरण 7
के संबंध में का इंटीग्रल है.
चरण 8
प्रतिस्थापित करें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
पर और पर का मान ज्ञात करें.
चरण 8.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 8.2.2
को से गुणा करें.
चरण 9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
वितरण गुणधर्म लागू करें.
चरण 9.2
को से गुणा करें.
चरण 9.3
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.3.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 9.3.2
और को मिलाएं.
चरण 9.3.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 10
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप:
चरण 11