समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
दूसरा व्युत्पन्न पता करें.
चरण 1.1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1.1
अवकलन करें.
चरण 1.1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2
का मान ज्ञात करें.
चरण 1.1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.1.2.3
को से गुणा करें.
चरण 1.1.2
दूसरा व्युत्पन्न पता करें.
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
का मान ज्ञात करें.
चरण 1.1.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.2.3
को से गुणा करें.
चरण 1.1.2.3
का मान ज्ञात करें.
चरण 1.1.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3.3
को से गुणा करें.
चरण 1.1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 1.2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
चरण 1.2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 1.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 1.2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 1.2.3.2
बाईं ओर को सरल बनाएंं.
चरण 1.2.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.2.1.2
को से विभाजित करें.
चरण 1.2.3.3
दाईं ओर को सरल बनाएंं.
चरण 1.2.3.3.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 1.2.3.3.1.1
में से का गुणनखंड करें.
चरण 1.2.3.3.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 1.2.3.3.1.2.1
में से का गुणनखंड करें.
चरण 1.2.3.3.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3.3.1.2.3
व्यंजक को फिर से लिखें.
चरण 1.2.3.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.4
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.2.5
को सरल करें.
चरण 1.2.5.1
को के रूप में फिर से लिखें.
चरण 1.2.5.2
करणी से पदों को बाहर निकालें.
चरण 1.2.5.3
को के रूप में फिर से लिखें.
चरण 1.2.5.4
और को मिलाएं.
चरण 1.2.6
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.2.6.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.6.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.6.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 3
-मानों के आसपास अंतराल करें जहां दूसरा व्युत्पन्न शून्य या अपरिभाषित हो.
चरण 4
चरण 4.1
व्यंजक में चर को से बदलें.
चरण 4.2
परिणाम को सरल बनाएंं.
चरण 4.2.1
प्रत्येक पद को सरल करें.
चरण 4.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.2.1.2
को से गुणा करें.
चरण 4.2.2
और जोड़ें.
चरण 4.2.3
अंतिम उत्तर है.
चरण 4.3
अंतराल पर ग्राफ अवतल ऊपर है क्योंकि धनात्मक है.
ग्राफ अवतल ऊपर है
ग्राफ अवतल ऊपर है
चरण 5