कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं y=x^5 x का प्राकृतिक लघुगणक
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.1.2
के संबंध में का व्युत्पन्न है.
चरण 2.1.3
घात नियम का उपयोग करके अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
और को मिलाएं.
चरण 2.1.3.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.2.1
में से का गुणनखंड करें.
चरण 2.1.3.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.2.2.1
को के घात तक बढ़ाएं.
चरण 2.1.3.2.2.2
में से का गुणनखंड करें.
चरण 2.1.3.2.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.3.2.2.4
व्यंजक को फिर से लिखें.
चरण 2.1.3.2.2.5
को से विभाजित करें.
चरण 2.1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.4
पदों को पुन: व्यवस्थित करें
चरण 2.2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2.2.3
के संबंध में का व्युत्पन्न है.
चरण 2.2.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.5
और को मिलाएं.
चरण 2.2.2.6
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.6.1
में से का गुणनखंड करें.
चरण 2.2.2.6.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.6.2.1
को के घात तक बढ़ाएं.
चरण 2.2.2.6.2.2
में से का गुणनखंड करें.
चरण 2.2.2.6.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.6.2.4
व्यंजक को फिर से लिखें.
चरण 2.2.2.6.2.5
को से विभाजित करें.
चरण 2.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
वितरण गुणधर्म लागू करें.
चरण 2.2.3.2
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.2.1
को से गुणा करें.
चरण 2.2.3.2.2
और जोड़ें.
चरण 2.2.3.3
पदों को पुन: व्यवस्थित करें
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.1.2
व्यंजक को फिर से लिखें.
चरण 3.3.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.2.2.2
को से विभाजित करें.
चरण 3.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.3.3.1.2
व्यंजक को फिर से लिखें.
चरण 3.3.3.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.4
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.5
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.6
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.6.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4
उन बिंदुओं को पता करें जहां दूसरा व्युत्पन्न है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
व्यंजक में चर को से बदलें.
चरण 4.1.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
उत्पाद नियम को पर लागू करें.
चरण 4.1.2.2
एक का कोई भी घात एक होता है.
चरण 4.1.2.3
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.3.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 4.1.2.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.3.2.1
में से का गुणनखंड करें.
चरण 4.1.2.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.3.2.3
व्यंजक को फिर से लिखें.
चरण 4.1.2.4
ऋणात्मक घातांक नियम का उपयोग करके को न्यूमेरेटर में ले जाएं.
चरण 4.1.2.5
को लघुगणक के बाहर ले जाकर का प्रसार करें.
चरण 4.1.2.6
का प्राकृतिक लघुगणक है.
चरण 4.1.2.7
को से गुणा करें.
चरण 4.1.2.8
को से गुणा करें.
चरण 4.1.2.9
को के बाईं ओर ले जाएं.
चरण 4.1.2.10
अंतिम उत्तर है.
चरण 4.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 5
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को के घात तक बढ़ाएं.
चरण 6.2.1.4
को से गुणा करें.
चरण 6.2.1.5
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 6.2.1.6
को के घात तक बढ़ाएं.
चरण 6.2.2
और जोड़ें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 7
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को के घात तक बढ़ाएं.
चरण 7.2.1.4
को से गुणा करें.
चरण 7.2.1.5
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 7.2.1.6
को के घात तक बढ़ाएं.
चरण 7.2.2
और जोड़ें.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 8
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 9