कैलकुलस उदाहरण

ज्ञात करें माध्यमान प्रमेय कहां सत्यापित होता है f(x)=x^2+1 , [5,11]
,
चरण 1
यदि अंतराल पर निरंतर है और पर अवकलनीय है, तो अंतराल में कम से कम एक वास्तविक संख्या मौजूद है जैसे कि . माध्य मान प्रमेय पर वक्र के स्पर्शरेखा के ढलान और बिंदुओं और के माध्यम से रेखा के ढलान के बीच संबंध को व्यक्त करती है.
अगर पर निरन्तर है
और यदि पर अवकलनीय है,
तो : में कम से कम एक बिंदु मौजूद है.
चरण 2
जांचें कि क्या निरंतर है.
और स्टेप्स के लिए टैप करें…
चरण 2.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 2.2
पर निरंतर है.
फलन निरंतर है.
फलन निरंतर है.
चरण 3
व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.1.4
और जोड़ें.
चरण 3.2
का पहला व्युत्पन्न बटे , है.
चरण 4
पता करें कि व्युत्पन्न पर सतत है या नहीं.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
मध्यवर्ती संकेतन:
सेट-बिल्डर संकेतन:
चरण 4.2
पर निरंतर है.
फलन निरंतर है.
फलन निरंतर है.
चरण 5
फलन पर अलग-अलग है क्योंकि व्युत्पन्न पर निरंतर है.
फलन अवकलनीय है.
चरण 6
माध्य मान प्रमेय के लिए दो शर्तों को पूरा करता है. यह पर निरंतर है और पर अवकलनीय है.
, पर निरंतर है और पर अवकलनीय है.
चरण 7
अंतराल से का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
को के घात तक बढ़ाएं.
चरण 7.2.2
और जोड़ें.
चरण 7.2.3
अंतिम उत्तर है.
चरण 8
अंतराल से का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
को के घात तक बढ़ाएं.
चरण 8.2.2
और जोड़ें.
चरण 8.2.3
अंतिम उत्तर है.
चरण 9
के लिए को हल करें. .
और स्टेप्स के लिए टैप करें…
चरण 9.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को से गुणा करें.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
में से घटाएं.
चरण 9.1.4
में से घटाएं.
चरण 9.1.5
को से विभाजित करें.
चरण 9.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 9.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.2.1.2
को से विभाजित करें.
चरण 9.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.2.3.1
को से विभाजित करें.
चरण 10
अंत बिंदुओं और से गुजरने वाली रेखा के समानांतर पर एक स्पर्शरेखा पता की जाती है.
अंतिम बिंदुओं और से गुजरने वाली रेखा के समानांतर पर एक स्पर्शरेखा है.
चरण 11