समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
चरण 2.1
पहला व्युत्पन्न पता करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
का मान ज्ञात करें.
चरण 2.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.2.3
और को मिलाएं.
चरण 2.1.2.4
और को मिलाएं.
चरण 2.1.2.5
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 2.1.2.5.1
में से का गुणनखंड करें.
चरण 2.1.2.5.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 2.1.2.5.2.1
में से का गुणनखंड करें.
चरण 2.1.2.5.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.5.2.3
व्यंजक को फिर से लिखें.
चरण 2.1.3
का मान ज्ञात करें.
चरण 2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.1.3.3
को से गुणा करें.
चरण 2.2
दूसरा व्युत्पन्न पता करें.
चरण 2.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
का मान ज्ञात करें.
चरण 2.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.2.3
और को मिलाएं.
चरण 2.2.2.4
और को मिलाएं.
चरण 2.2.3
का मान ज्ञात करें.
चरण 2.2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3.3
को से गुणा करें.
चरण 2.3
का दूसरा व्युत्पन्न बटे , है.
चरण 3
चरण 3.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.3
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.4
समीकरण के दोनों पक्षों को सरल करें.
चरण 3.4.1
बाईं ओर को सरल बनाएंं.
चरण 3.4.1.1
को सरल करें.
चरण 3.4.1.1.1
जोड़ना.
चरण 3.4.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.4.1.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.1.1.3.2
को से विभाजित करें.
चरण 3.4.2
दाईं ओर को सरल बनाएंं.
चरण 3.4.2.1
को सरल करें.
चरण 3.4.2.1.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.1.1
में से का गुणनखंड करें.
चरण 3.4.2.1.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.1.3
व्यंजक को फिर से लिखें.
चरण 3.4.2.1.2
को से गुणा करें.
चरण 3.5
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.6
को सरल करें.
चरण 3.6.1
को के रूप में फिर से लिखें.
चरण 3.6.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.7
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.7.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.7.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.7.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
चरण 4.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
चरण 4.1.1
व्यंजक में चर को से बदलें.
चरण 4.1.2
परिणाम को सरल बनाएंं.
चरण 4.1.2.1
प्रत्येक पद को सरल करें.
चरण 4.1.2.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.1.2.1
में से का गुणनखंड करें.
चरण 4.1.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 4.1.2.1.3
को के घात तक बढ़ाएं.
चरण 4.1.2.1.4
को से गुणा करें.
चरण 4.1.2.2
में से घटाएं.
चरण 4.1.2.3
अंतिम उत्तर है.
चरण 4.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4.3
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
चरण 4.3.1
व्यंजक में चर को से बदलें.
चरण 4.3.2
परिणाम को सरल बनाएंं.
चरण 4.3.2.1
प्रत्येक पद को सरल करें.
चरण 4.3.2.1.1
को के घात तक बढ़ाएं.
चरण 4.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.1.2.1
में से का गुणनखंड करें.
चरण 4.3.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 4.3.2.1.3
को के घात तक बढ़ाएं.
चरण 4.3.2.1.4
को से गुणा करें.
चरण 4.3.2.2
में से घटाएं.
चरण 4.3.2.3
अंतिम उत्तर है.
चरण 4.4
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4.5
ऐसे बिंदु निर्धारित करें जो विभक्ति बिंदु हो सकते हैं.
चरण 5
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को से विभाजित करें.
चरण 6.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
प्रत्येक पद को सरल करें.
चरण 7.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को से विभाजित करें.
चरण 7.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 8
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
चरण 8.2.1
प्रत्येक पद को सरल करें.
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.1.3
को से विभाजित करें.
चरण 8.2.2
में से घटाएं.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को प्लस से माइनस या माइनस से प्लस में बदल देती है. इस मामले में विभक्ति बिंदु हैं.
चरण 10