कैलकुलस उदाहरण

नति परिवर्तन बिन्दुओं का पता लगाएं g(x)=x(x^4-3)
चरण 1
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.4
और जोड़ें.
चरण 1.1.3
को के घात तक बढ़ाएं.
चरण 1.1.4
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.5
और जोड़ें.
चरण 1.1.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.7
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.7.1
को से गुणा करें.
चरण 1.1.7.2
और जोड़ें.
चरण 1.2
दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.2.3
को से गुणा करें.
चरण 1.2.3
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.3.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.3.2
और जोड़ें.
चरण 1.3
का दूसरा व्युत्पन्न बटे , है.
चरण 2
दूसरे व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
दूसरे व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को से विभाजित करें.
चरण 2.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के रूप में फिर से लिखें.
चरण 2.4.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 3
उन बिंदुओं को पता करें जहां दूसरा व्युत्पन्न है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
का मान ज्ञात करने के लिए को में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
व्यंजक में चर को से बदलें.
चरण 3.1.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 3.1.2.2
में से घटाएं.
चरण 3.1.2.3
को से गुणा करें.
चरण 3.1.2.4
अंतिम उत्तर है.
चरण 3.2
को में प्रतिस्थापित करने पर पता किया जाने वाला बिंदु है. यह बिंदु एक विभक्ति बिंदु हो सकता है.
चरण 4
को उन बिंदुओं के आसपास के अंतराल में विभाजित करें जो संभावित रूप से विभक्ति बिंदु हो सकते हैं.
चरण 5
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
को के घात तक बढ़ाएं.
चरण 5.2.2
को से गुणा करें.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर, दूसरा व्युत्पन्न है. चूँकि यह ऋणात्मक है, इसलिए अंतराल पर दूसरा व्युत्पन्न घट रहा है
से पर घटता हुआ
से पर घटता हुआ
चरण 6
यह निर्धारित करने के लिए कि यह बढ़ता या घटता है, अंतराल से एक मान को दूसरे व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
को के घात तक बढ़ाएं.
चरण 6.2.2
को से गुणा करें.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर, दूसरा व्युत्पन्न है. चूंकि यह धनात्मक है, इसलिए दूसरा अवकलज अंतराल पर बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 7
एक विभक्ति बिंदु एक वक्र पर एक बिंदु है, जिस पर अवतलता संकेत को जोड़ से घटाव या घटाव से जोड़ में बदल देती है. इस मामले में विभक्ति बिंदु है.
चरण 8