समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
अवकलन करें.
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2
का मान ज्ञात करें.
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
और को मिलाएं.
चरण 1.1.2.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के पदों का LCD पता करें.
चरण 2.2.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.2.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 2.3
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 2.3.1
के प्रत्येक पद को से गुणा करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
चरण 2.3.2.1
प्रत्येक पद को सरल करें.
चरण 2.3.2.1.1
घातांक जोड़कर को से गुणा करें.
चरण 2.3.2.1.1.1
ले जाएं.
चरण 2.3.2.1.1.2
को से गुणा करें.
चरण 2.3.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.3.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 2.3.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.3.1
को से गुणा करें.
चरण 2.4
समीकरण को हल करें.
चरण 2.4.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.4.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.4.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.4.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.4.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.2.1.2
को से विभाजित करें.
चरण 2.4.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.4.2.3.1
को से विभाजित करें.
चरण 2.4.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.4.4
को सरल करें.
चरण 2.4.4.1
को के रूप में फिर से लिखें.
चरण 2.4.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.4.5
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.4.5.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.4.5.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.4.5.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3
चरण 3.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4
चरण 4.1
पर मान ज्ञात करें.
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
प्रत्येक पद को सरल करें.
चरण 4.1.2.1
को के घात तक बढ़ाएं.
चरण 4.1.2.2
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 4.1.2.3
को के घात तक बढ़ाएं.
चरण 4.2
पर मान ज्ञात करें.
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
एक ऋणात्मक संख्या का प्राकृतिक लघुगणक अपरिभाषित होता है.
अपरिभाषित
अपरिभाषित
चरण 4.3
पर मान ज्ञात करें.
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
शून्य का प्राकृतिक लघुगणक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
चरण 4.4
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5