कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये x+cos(x)
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2
के संबंध में का व्युत्पन्न है.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.3.2.2
को से विभाजित करें.
चरण 2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को से विभाजित करें.
चरण 2.4
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 2.5
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
का सटीक मान है.
चरण 2.6
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 2.7
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.7.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.2.1
और को मिलाएं.
चरण 2.7.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.7.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.3.1
को के बाईं ओर ले जाएं.
चरण 2.7.3.2
में से घटाएं.
चरण 2.8
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 2.8.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 2.8.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 2.8.4
को से विभाजित करें.
चरण 2.9
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
, किसी भी पूर्णांक के लिए
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
का सटीक मान है.
चरण 4.1.2.2
और जोड़ें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 4.2.2.1.2
का सटीक मान है.
चरण 4.2.2.2
और जोड़ें.
चरण 4.3
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 4.3.2.1.2
का सटीक मान है.
चरण 4.3.2.2
और जोड़ें.
चरण 4.4
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.1
को से प्रतिस्थापित करें.
चरण 4.4.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.4.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 4.4.2.1.2
का सटीक मान है.
चरण 4.4.2.2
और जोड़ें.
चरण 4.5
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.1
को से प्रतिस्थापित करें.
चरण 4.5.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.5.2.1.1
का पूरा घुमाव घटाएं जब तक कि कोण से बड़ा या उसके बराबर और से कम न हो जाए.
चरण 4.5.2.1.2
का सटीक मान है.
चरण 4.5.2.2
और जोड़ें.
चरण 4.6
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5