समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पहला व्युत्पन्न पता करें.
चरण 1.1.1
अचर उत्पाद नियम का उपयोग करके अवकलन करें.
चरण 1.1.1.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.1.2
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.3
को के रूप में फिर से लिखें.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
चरण 1.1.3.1
को से गुणा करें.
चरण 1.1.3.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.4
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.6
को से गुणा करें.
चरण 1.1.3.7
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.8
और जोड़ें.
चरण 1.1.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 1.1.5
सरल करें.
चरण 1.1.5.1
और को मिलाएं.
चरण 1.1.5.2
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3
को के बराबर सेट करें और के लिए हल करें.
चरण 2.3.1
को के बराबर सेट करें.
चरण 2.3.2
के लिए हल करें.
चरण 2.3.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 2.3.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 2.3.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.2.2.1.2
को से विभाजित करें.
चरण 2.3.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.2.2.3.1
को से विभाजित करें.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
के लिए हल करें.
चरण 2.4.2.1
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 2.4.2.2
के बाद से कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
चरण 4.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 4.2
के लिए हल करें.
चरण 4.2.1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 4.2.1.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 4.2.1.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 4.2.1.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 4.2.1.2
उत्पाद नियम को पर लागू करें.
चरण 4.2.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4.2.3
को के बराबर सेट करें और के लिए हल करें.
चरण 4.2.3.1
को के बराबर सेट करें.
चरण 4.2.3.2
के लिए हल करें.
चरण 4.2.3.2.1
को के बराबर सेट करें.
चरण 4.2.3.2.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4.2.4
को के बराबर सेट करें और के लिए हल करें.
चरण 4.2.4.1
को के बराबर सेट करें.
चरण 4.2.4.2
के लिए हल करें.
चरण 4.2.4.2.1
को के बराबर सेट करें.
चरण 4.2.4.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4.3
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 5
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 6
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
चरण 6.2.1
भाजक को सरल करें.
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
और जोड़ें.
चरण 6.2.1.4
में से घटाएं.
चरण 6.2.1.5
को के घात तक बढ़ाएं.
चरण 6.2.2
व्यंजक को सरल बनाएंं.
चरण 6.2.2.1
को से गुणा करें.
चरण 6.2.2.2
में से घटाएं.
चरण 6.2.3
गुणा करें.
चरण 6.2.3.1
और को मिलाएं.
चरण 6.2.3.2
को से गुणा करें.
चरण 6.2.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.5
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
चरण 7.2.1
भाजक को सरल करें.
चरण 7.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
और जोड़ें.
चरण 7.2.1.4
में से घटाएं.
चरण 7.2.1.5
को के घात तक बढ़ाएं.
चरण 7.2.2
व्यंजक को सरल बनाएंं.
चरण 7.2.2.1
को से गुणा करें.
चरण 7.2.2.2
में से घटाएं.
चरण 7.2.3
गुणा करें.
चरण 7.2.3.1
और को मिलाएं.
चरण 7.2.3.2
को से गुणा करें.
चरण 7.2.4
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.5
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
चरण 8.2.1
भाजक को सरल करें.
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.1.3
में से घटाएं.
चरण 8.2.1.4
में से घटाएं.
चरण 8.2.1.5
को के घात तक बढ़ाएं.
चरण 8.2.2
व्यंजक को सरल बनाएंं.
चरण 8.2.2.1
को से गुणा करें.
चरण 8.2.2.2
में से घटाएं.
चरण 8.2.3
गुणा करें.
चरण 8.2.3.1
और को मिलाएं.
चरण 8.2.3.2
को से गुणा करें.
चरण 8.2.4
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
चरण 9.1
व्यंजक में चर को से बदलें.
चरण 9.2
परिणाम को सरल बनाएंं.
चरण 9.2.1
भाजक को सरल करें.
चरण 9.2.1.1
को के घात तक बढ़ाएं.
चरण 9.2.1.2
को से गुणा करें.
चरण 9.2.1.3
में से घटाएं.
चरण 9.2.1.4
में से घटाएं.
चरण 9.2.1.5
को के घात तक बढ़ाएं.
चरण 9.2.2
व्यंजक को सरल बनाएंं.
चरण 9.2.2.1
को से गुणा करें.
चरण 9.2.2.2
में से घटाएं.
चरण 9.2.3
गुणा करें.
चरण 9.2.3.1
और को मिलाएं.
चरण 9.2.3.2
को से गुणा करें.
चरण 9.2.4
अंतिम उत्तर है.
चरण 9.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 10
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 11