कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=3x^5-5x^3
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
को से गुणा करें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 2.2.3
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
में से का गुणनखंड करें.
चरण 2.2.3.2
में से का गुणनखंड करें.
चरण 2.2.3.3
में से का गुणनखंड करें.
चरण 2.2.4
की सभी घटनाओं को से बदलें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 2.4.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.2.1
को के रूप में फिर से लिखें.
चरण 2.4.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.4.2.2.3
जोड़ या घटाव , है.
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 2.5.2.3
का कोई भी मूल होता है.
चरण 2.5.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 2.5.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 2.5.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 5
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
को के घात तक बढ़ाएं.
चरण 5.2.1.2
को से गुणा करें.
चरण 5.2.1.3
को के घात तक बढ़ाएं.
चरण 5.2.1.4
को से गुणा करें.
चरण 5.2.2
में से घटाएं.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1.1
उत्पाद नियम को पर लागू करें.
चरण 6.2.1.1.2
उत्पाद नियम को पर लागू करें.
चरण 6.2.1.2
को के घात तक बढ़ाएं.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.1.4
एक का कोई भी घात एक होता है.
चरण 6.2.1.5
को के घात तक बढ़ाएं.
चरण 6.2.1.6
और को मिलाएं.
चरण 6.2.1.7
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.7.1
उत्पाद नियम को पर लागू करें.
चरण 6.2.1.7.2
उत्पाद नियम को पर लागू करें.
चरण 6.2.1.8
को के घात तक बढ़ाएं.
चरण 6.2.1.9
को से गुणा करें.
चरण 6.2.1.10
एक का कोई भी घात एक होता है.
चरण 6.2.1.11
को के घात तक बढ़ाएं.
चरण 6.2.1.12
और को मिलाएं.
चरण 6.2.1.13
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 6.2.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.3.1
को से गुणा करें.
चरण 6.2.3.2
को से गुणा करें.
चरण 6.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 6.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.5.1
को से गुणा करें.
चरण 6.2.5.2
में से घटाएं.
चरण 6.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 6.2.7
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 7.2.1.2
एक का कोई भी घात एक होता है.
चरण 7.2.1.3
को के घात तक बढ़ाएं.
चरण 7.2.1.4
और को मिलाएं.
चरण 7.2.1.5
उत्पाद नियम को पर लागू करें.
चरण 7.2.1.6
एक का कोई भी घात एक होता है.
चरण 7.2.1.7
को के घात तक बढ़ाएं.
चरण 7.2.1.8
और को मिलाएं.
चरण 7.2.1.9
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 7.2.3
प्रत्येक व्यंजक को के सामान्य भाजक के साथ लिखें, प्रत्येक को के उपयुक्त गुणनखंड से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.3.1
को से गुणा करें.
चरण 7.2.3.2
को से गुणा करें.
चरण 7.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 7.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.5.1
को से गुणा करें.
चरण 7.2.5.2
में से घटाएं.
चरण 7.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 7.2.7
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 8
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 8.1
व्यंजक में चर को से बदलें.
चरण 8.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 8.2.1.1
को के घात तक बढ़ाएं.
चरण 8.2.1.2
को से गुणा करें.
चरण 8.2.1.3
को के घात तक बढ़ाएं.
चरण 8.2.1.4
को से गुणा करें.
चरण 8.2.2
में से घटाएं.
चरण 8.2.3
अंतिम उत्तर है.
चरण 8.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 9
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 10