कैलकुलस उदाहरण

अवकलजों का उपयोग करके पता लगाए कहाँ बढ़ /घट रहा है f(x)=x^3-6x^2-24x
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
को से गुणा करें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
चरण 2.2.2
में से का गुणनखंड करें.
चरण 2.2.3
में से का गुणनखंड करें.
चरण 2.2.4
में से का गुणनखंड करें.
चरण 2.2.5
में से का गुणनखंड करें.
चरण 2.3
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.3.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.2.1.2
को से विभाजित करें.
चरण 2.3.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को से विभाजित करें.
चरण 2.4
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 2.5
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 2.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.1
को के घात तक बढ़ाएं.
चरण 2.6.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.2.1
को से गुणा करें.
चरण 2.6.1.2.2
को से गुणा करें.
चरण 2.6.1.3
और जोड़ें.
चरण 2.6.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1.4.1
में से का गुणनखंड करें.
चरण 2.6.1.4.2
को के रूप में फिर से लिखें.
चरण 2.6.1.5
करणी से पदों को बाहर निकालें.
चरण 2.6.2
को से गुणा करें.
चरण 2.6.3
को सरल करें.
चरण 2.7
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1.1
को के घात तक बढ़ाएं.
चरण 2.7.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1.2.1
को से गुणा करें.
चरण 2.7.1.2.2
को से गुणा करें.
चरण 2.7.1.3
और जोड़ें.
चरण 2.7.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.7.1.4.1
में से का गुणनखंड करें.
चरण 2.7.1.4.2
को के रूप में फिर से लिखें.
चरण 2.7.1.5
करणी से पदों को बाहर निकालें.
चरण 2.7.2
को से गुणा करें.
चरण 2.7.3
को सरल करें.
चरण 2.7.4
को में बदलें.
चरण 2.8
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1.1
को के घात तक बढ़ाएं.
चरण 2.8.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1.2.1
को से गुणा करें.
चरण 2.8.1.2.2
को से गुणा करें.
चरण 2.8.1.3
और जोड़ें.
चरण 2.8.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.8.1.4.1
में से का गुणनखंड करें.
चरण 2.8.1.4.2
को के रूप में फिर से लिखें.
चरण 2.8.1.5
करणी से पदों को बाहर निकालें.
चरण 2.8.2
को से गुणा करें.
चरण 2.8.3
को सरल करें.
चरण 2.8.4
को में बदलें.
चरण 2.9
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 3
वे मान जो व्युत्पन्न को के बराबर बनाते हैं, वे हैं.
चरण 4
को मानों के आस-पास अलग-अलग अंतराल में विभाजित करें जो व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 5
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
व्यंजक में चर को से बदलें.
चरण 5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
को के घात तक बढ़ाएं.
चरण 5.2.1.2
को से गुणा करें.
चरण 5.2.1.3
को से गुणा करें.
चरण 5.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
और जोड़ें.
चरण 5.2.2.2
में से घटाएं.
चरण 5.2.3
अंतिम उत्तर है.
चरण 5.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 6
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक में चर को से बदलें.
चरण 6.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1.1
को के घात तक बढ़ाएं.
चरण 6.2.1.2
को से गुणा करें.
चरण 6.2.1.3
को से गुणा करें.
चरण 6.2.2
संख्याओं को घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
में से घटाएं.
चरण 6.2.2.2
में से घटाएं.
चरण 6.2.3
अंतिम उत्तर है.
चरण 6.3
पर व्युत्पन्न है. चूंकि यह ऋणात्मक है, पर फलन कम हो रहा है.
से पर घटता हुआ
से पर घटता हुआ
चरण 7
यह निर्धारित करने के लिए कि फलन बढ़ रहा है या घट रहा है, अंतराल से एक मान को व्युत्पन्न में प्रतिस्थापित करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक में चर को से बदलें.
चरण 7.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
को के घात तक बढ़ाएं.
चरण 7.2.1.2
को से गुणा करें.
चरण 7.2.1.3
को से गुणा करें.
चरण 7.2.2
संख्याओं को घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.2.1
में से घटाएं.
चरण 7.2.2.2
में से घटाएं.
चरण 7.2.3
अंतिम उत्तर है.
चरण 7.3
पर व्युत्पन्न है. चूंकि यह सकारात्मक है, पर फलन बढ़ रहा है.
के बाद से पर बढ़ रहा है
के बाद से पर बढ़ रहा है
चरण 8
उन अंतरालों की सूची बनाइए जिन पर फलन बढ़ रहा है और घट रहा है.
बढ़ रहा है:
इस पर घटता हुआ:
चरण 9