कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये x^2+1-x का वर्गमूल
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 1.1.2.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.2.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.5
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.6
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.1.2.7
और को मिलाएं.
चरण 1.1.2.8
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.1.2.9
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.9.1
को से गुणा करें.
चरण 1.1.2.9.2
में से घटाएं.
चरण 1.1.2.10
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.1.2.11
और जोड़ें.
चरण 1.1.2.12
और को मिलाएं.
चरण 1.1.2.13
और को मिलाएं.
चरण 1.1.2.14
और को मिलाएं.
चरण 1.1.2.15
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.1.2.16
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.2.17
व्यंजक को फिर से लिखें.
चरण 1.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के प्रत्येक पक्ष को ग्राफ करें. हल प्रतिच्छेदन बिंदु का x-मान है.
कोई हल नहीं
कोई हल नहीं
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
मूल समस्या के डोमेन में का कोई मान नहीं है जहां व्युत्पन्न या अपरिभाषित है.
कोई क्रांतिक बिंदु नहीं मिला