कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये xe^(-2x^2)
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.1.2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.1.3
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3.3
को से गुणा करें.
चरण 1.1.4
को के घात तक बढ़ाएं.
चरण 1.1.5
को के घात तक बढ़ाएं.
चरण 1.1.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.7
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.7.1
और जोड़ें.
चरण 1.1.7.2
को के बाईं ओर ले जाएं.
चरण 1.1.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.9
को से गुणा करें.
चरण 1.1.10
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.10.1
पदों को पुन: व्यवस्थित करें
चरण 1.1.10.2
गुणनखंडों को में पुन: क्रमित करें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
में से का गुणनखंड करें.
चरण 2.2.1.2
से गुणा करें.
चरण 2.2.1.3
में से का गुणनखंड करें.
चरण 2.2.2
को के रूप में फिर से लिखें.
चरण 2.2.3
को के रूप में फिर से लिखें.
चरण 2.2.4
और को पुन: क्रमित करें.
चरण 2.2.5
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 2.2.6
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.6.1
को से गुणा करें.
चरण 2.2.6.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के बराबर सेट करें.
चरण 2.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 2.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 2.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
को के बराबर सेट करें.
चरण 2.5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.5.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.2.1.2
को से विभाजित करें.
चरण 2.5.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.1
को के बराबर सेट करें.
चरण 2.6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.6.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.6.2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.6.2.2.2.1.2
को से विभाजित करें.
चरण 2.6.2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.6.2.2.3.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
घातांक वितरण करने के लिए घात नियम का उपयोग करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.1.2.1.2
उत्पाद नियम को पर लागू करें.
चरण 4.1.2.2
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
को के घात तक बढ़ाएं.
चरण 4.1.2.2.2
को से गुणा करें.
चरण 4.1.2.2.3
एक का कोई भी घात एक होता है.
चरण 4.1.2.2.4
को के घात तक बढ़ाएं.
चरण 4.1.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.3.1
में से का गुणनखंड करें.
चरण 4.1.2.3.2
में से का गुणनखंड करें.
चरण 4.1.2.3.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.3.4
व्यंजक को फिर से लिखें.
चरण 4.1.2.4
को के रूप में फिर से लिखें.
चरण 4.1.2.5
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.1.2.6
को से गुणा करें.
चरण 4.1.2.7
को के बाईं ओर ले जाएं.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 4.2.2.1.2
एक का कोई भी घात एक होता है.
चरण 4.2.2.1.3
को के घात तक बढ़ाएं.
चरण 4.2.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.2.1
में से का गुणनखंड करें.
चरण 4.2.2.2.2
में से का गुणनखंड करें.
चरण 4.2.2.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.2.2.4
व्यंजक को फिर से लिखें.
चरण 4.2.2.3
को के रूप में फिर से लिखें.
चरण 4.2.2.4
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 4.2.2.5
जोड़ना.
चरण 4.2.2.6
को से गुणा करें.
चरण 4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5