कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये f(x)=(x-3)/(x^2)
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 1.1.2.1.2
को से गुणा करें.
चरण 1.1.2.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.5
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.5.1
और जोड़ें.
चरण 1.1.2.5.2
को से गुणा करें.
चरण 1.1.2.6
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.7
गुणनखंड निकालकर सरलीकृत करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.7.1
को से गुणा करें.
चरण 1.1.2.7.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.7.2.1
में से का गुणनखंड करें.
चरण 1.1.2.7.2.2
में से का गुणनखंड करें.
चरण 1.1.2.7.2.3
में से का गुणनखंड करें.
चरण 1.1.3
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.3.1
में से का गुणनखंड करें.
चरण 1.1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.1.3.3
व्यंजक को फिर से लिखें.
चरण 1.1.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.1
वितरण गुणधर्म लागू करें.
चरण 1.1.4.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.4.2.1
को से गुणा करें.
चरण 1.1.4.2.2
में से घटाएं.
चरण 1.1.4.3
में से का गुणनखंड करें.
चरण 1.1.4.4
को के रूप में फिर से लिखें.
चरण 1.1.4.5
में से का गुणनखंड करें.
चरण 1.1.4.6
को के रूप में फिर से लिखें.
चरण 1.1.4.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 2.3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 3.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
को के रूप में फिर से लिखें.
चरण 3.2.2.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
व्यंजक को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
में से घटाएं.
चरण 4.1.2.1.2
को के घात तक बढ़ाएं.
चरण 4.1.2.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.1
में से का गुणनखंड करें.
चरण 4.1.2.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.2.2.1
में से का गुणनखंड करें.
चरण 4.1.2.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.2.2.3
व्यंजक को फिर से लिखें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.2.2.2
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
अपरिभाषित
चरण 4.3
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5