कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये f(x)=(x^2+25)/x
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
भागफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.1.2
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.2.4
और जोड़ें.
चरण 1.1.3
को के घात तक बढ़ाएं.
चरण 1.1.4
को के घात तक बढ़ाएं.
चरण 1.1.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.1.6
और जोड़ें.
चरण 1.1.7
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.8
को से गुणा करें.
चरण 1.1.9
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.9.1
वितरण गुणधर्म लागू करें.
चरण 1.1.9.2
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.9.2.1
को से गुणा करें.
चरण 1.1.9.2.2
में से घटाएं.
चरण 1.1.9.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.9.3.1
को के रूप में फिर से लिखें.
चरण 1.1.9.3.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 2.3
के लिए समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3.2
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को के बराबर सेट करें.
चरण 2.3.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3.3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को के बराबर सेट करें.
चरण 2.3.3.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3.4
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
को के रूप में फिर से लिखें.
चरण 3.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.2.2.3
जोड़ या घटाव , है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1.1
को के घात तक बढ़ाएं.
चरण 4.1.2.1.2
और जोड़ें.
चरण 4.1.2.2
को से विभाजित करें.
चरण 4.2
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को से प्रतिस्थापित करें.
चरण 4.2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1.1
को के घात तक बढ़ाएं.
चरण 4.2.2.1.2
और जोड़ें.
चरण 4.2.2.2
को से विभाजित करें.
चरण 4.3
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से प्रतिस्थापित करें.
चरण 4.3.2
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
चरण 4.4
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5