कैलकुलस उदाहरण

विशेष बिन्दु ज्ञात कीजिये f(x)=x^3-8
चरण 1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.1.4
और जोड़ें.
चरण 1.2
का पहला व्युत्पन्न बटे , है.
चरण 2
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.1.2
को से विभाजित करें.
चरण 2.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
को से विभाजित करें.
चरण 2.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
को के रूप में फिर से लिखें.
चरण 2.4.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.4.3
जोड़ या घटाव , है.
चरण 3
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 3.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 4
प्रत्येक मान पर का मूल्यांकन करें जहां व्युत्पन्न या अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पर मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को से प्रतिस्थापित करें.
चरण 4.1.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 4.1.2.2
में से घटाएं.
चरण 4.2
सभी बिंदुओं को सूचीबद्ध करें.
चरण 5