समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
पता करें कि व्यंजक/अभिव्यक्ति कहाँ अपरिभाषित है.
चरण 1.2
चूँकि को बाईं ओर से और को दाईं ओर से के रूप में, फिर (EQUATION6 ) एक ऊर्ध्वाधर अनंतस्पर्शी है.
चरण 1.3
चूँकि को बाईं ओर से और को दाईं ओर से के रूप में, फिर (EQUATION6 ) एक ऊर्ध्वाधर अनंतस्पर्शी है.
चरण 1.4
सभी ऊर्ध्वाधर अनंतस्पर्शी की सूची बनाएंं:
चरण 1.5
लघुगणक को अनदेखा करते हुए, परिमेय फलन पर विचार करें जहां न्यूमेरेटर की घात है और भाजक की घात है.
1. यदि , तो x-अक्ष, , हॉरिजॉन्टल ऐसिम्प्टोट है.
2. यदि है, तो हॉरिजॉन्टल ऐसिम्प्टोट रेखा है.
3. यदि है, तो कोई हॉरिजॉन्टल ऐसिम्प्टोट नहीं है (एक तिरछी अनंतस्पर्शी है).
चरण 1.6
और पता करें.
चरण 1.7
चूंकि , x-अक्ष, , हॉरिजॉन्टल ऐसिम्प्टोट है.
चरण 1.8
लघुगणकीय और त्रिकोणमितीय फलनों के लिए कोई तिरछी अनंतस्पर्शी मौजूद नहीं है.
कोई तिरछी अनंतस्पर्शी नहीं
चरण 1.9
यह सभी अनंतस्पर्शी का सेट है.
ऊर्ध्वाधर अनंतस्पर्शी:
हॉरिजॉन्टल ऐसिम्प्टोट:
ऊर्ध्वाधर अनंतस्पर्शी:
हॉरिजॉन्टल ऐसिम्प्टोट:
चरण 2
चरण 2.1
व्यंजक में चर को से बदलें.
चरण 2.2
परिणाम को सरल बनाएंं.
चरण 2.2.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 2.2.2
को के घात तक बढ़ाएं.
चरण 2.2.3
अंतिम उत्तर है.
चरण 2.3
को दशमलव में बदलें.
चरण 3
चरण 3.1
व्यंजक में चर को से बदलें.
चरण 3.2
परिणाम को सरल बनाएंं.
चरण 3.2.1
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 3.2.1.1
में से का गुणनखंड करें.
चरण 3.2.1.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 3.2.1.2.1
में से का गुणनखंड करें.
चरण 3.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 3.2.2
अंतिम उत्तर है.
चरण 3.3
को दशमलव में बदलें.
चरण 4
लघुगणक फलन को पर ऊर्ध्वाधर अनंतस्पर्शी और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
ऊर्ध्वाधर अनंतस्पर्शी:
चरण 5