समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
का मान ज्ञात करें.
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 1.4
का मान ज्ञात करें.
चरण 1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.4.3
को से गुणा करें.
चरण 1.5
का मान ज्ञात करें.
चरण 1.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.3
को से गुणा करें.
चरण 1.6
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 1.6.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.6.2
और जोड़ें.
चरण 2
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 2.4
का मान ज्ञात करें.
चरण 2.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
को से गुणा करें.
चरण 2.5
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 2.5.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.5.2
और जोड़ें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
को से गुणा करें.
चरण 4.1.3
का मान ज्ञात करें.
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
को से गुणा करें.
चरण 4.1.4
का मान ज्ञात करें.
चरण 4.1.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.4.3
को से गुणा करें.
चरण 4.1.5
का मान ज्ञात करें.
चरण 4.1.5.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.3
को से गुणा करें.
चरण 4.1.6
स्थिरांक नियम का उपयोग करके अंतर करें.
चरण 4.1.6.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.6.2
और जोड़ें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 5.2.1
में से का गुणनखंड करें.
चरण 5.2.1.1
में से का गुणनखंड करें.
चरण 5.2.1.2
में से का गुणनखंड करें.
चरण 5.2.1.3
में से का गुणनखंड करें.
चरण 5.2.1.4
में से का गुणनखंड करें.
चरण 5.2.1.5
में से का गुणनखंड करें.
चरण 5.2.1.6
में से का गुणनखंड करें.
चरण 5.2.1.7
में से का गुणनखंड करें.
चरण 5.2.2
परिमेय मूल परीक्षण का उपयोग करते हुए गुणनखंड है.
चरण 5.2.2.1
यदि एक बहुपद फलन में पूर्णांक गुणांक होते हैं, तो प्रत्येक परिमेय शून्य का रूप होगा, जहां स्थिरांक का एक गुणनखंड है और प्रमुख गुणांक का एक गुणनखंड है.
चरण 5.2.2.2
का प्रत्येक संयोजन पता करें. ये बहुपद फलन के संभावित मूल हैं.
चरण 5.2.2.3
को प्रतिस्थापित करें और व्यंजक को सरल करें. इस स्थिति में, व्यंजक के बराबर है, इसलिए बहुपद का मूल है.
चरण 5.2.2.3.1
को बहुपद में प्रतिस्थापित करें.
चरण 5.2.2.3.2
को के घात तक बढ़ाएं.
चरण 5.2.2.3.3
को के घात तक बढ़ाएं.
चरण 5.2.2.3.4
और जोड़ें.
चरण 5.2.2.3.5
को से गुणा करें.
चरण 5.2.2.3.6
और जोड़ें.
चरण 5.2.2.3.7
में से घटाएं.
चरण 5.2.2.4
चूँकि एक ज्ञात मूल है, बहुपद को से भाग देकर भागफल बहुपद ज्ञात करें. इस बहुपद का उपयोग तब शेष मूलों को ज्ञात करने के लिए किया जा सकता है.
चरण 5.2.2.5
को से विभाजित करें.
चरण 5.2.2.5.1
बहुपदों को विभाजित करने के लिए सेट करें. यदि प्रत्येक घातांक के लिए कोई पद नहीं है, तो के मान वाला एक शब्द डालें.
+ | + | - | - |
चरण 5.2.2.5.2
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
+ | + | - | - |
चरण 5.2.2.5.3
भाजक से नए भागफल पद को गुणा करें.
+ | + | - | - | ||||||||
+ | + |
चरण 5.2.2.5.4
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
+ | + | - | - | ||||||||
- | - |
चरण 5.2.2.5.5
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
+ | + | - | - | ||||||||
- | - | ||||||||||
- |
चरण 5.2.2.5.6
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - |
चरण 5.2.2.5.7
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
- | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - |
चरण 5.2.2.5.8
भाजक से नए भागफल पद को गुणा करें.
- | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
चरण 5.2.2.5.9
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
- | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
चरण 5.2.2.5.10
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
- | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- |
चरण 5.2.2.5.11
अगली पदों को मूल लाभांश से नीचे वर्तमान लाभांश में खींचें.
- | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
चरण 5.2.2.5.12
भाज्य के उच्च क्रम के पद को विभाजक के उच्च क्रम वाले पद से विभाजित करें.
- | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
चरण 5.2.2.5.13
भाजक से नए भागफल पद को गुणा करें.
- | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
चरण 5.2.2.5.14
व्यंजक को भाज्य से घटाने की आवश्यकता है, इसलिए में सभी चिह्नों को प्रतिस्थापित करें
- | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + |
चरण 5.2.2.5.15
संकेतों को बदलने के बाद, नया लाभांश खोजने के लिए गुणा बहुपद से अंतिम लाभांश जोड़ें.
- | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
चरण 5.2.2.5.16
चूंकि रिमांडर है, इसलिए अंतिम उत्तर भागफल है.
चरण 5.2.2.6
गुणनखंडों के एक सेट के रूप में लिखें.
चरण 5.2.3
गुणनखंड करें.
चरण 5.2.3.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 5.2.3.1.1
AC विधि का उपयोग करके का गुणनखंड करें.
चरण 5.2.3.1.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 5.2.3.1.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 5.2.3.1.2
अनावश्यक कोष्ठक हटा दें.
चरण 5.2.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 5.2.4
प्रतिपादकों को जोड़ें.
चरण 5.2.4.1
को के घात तक बढ़ाएं.
चरण 5.2.4.2
को के घात तक बढ़ाएं.
चरण 5.2.4.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 5.2.4.4
और जोड़ें.
चरण 5.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.4
को के बराबर सेट करें और के लिए हल करें.
चरण 5.4.1
को के बराबर सेट करें.
चरण 5.4.2
के लिए हल करें.
चरण 5.4.2.1
को के बराबर सेट करें.
चरण 5.4.2.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.5
को के बराबर सेट करें और के लिए हल करें.
चरण 5.5.1
को के बराबर सेट करें.
चरण 5.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
प्रत्येक पद को सरल करें.
चरण 9.1.1
को के घात तक बढ़ाएं.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
को से गुणा करें.
चरण 9.2
संख्याओं को घटाकर सरल करें.
चरण 9.2.1
में से घटाएं.
चरण 9.2.2
में से घटाएं.
चरण 10
चरण 10.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 10.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.2.1
व्यंजक में चर को से बदलें.
चरण 10.2.2
परिणाम को सरल बनाएंं.
चरण 10.2.2.1
प्रत्येक पद को सरल करें.
चरण 10.2.2.1.1
को के घात तक बढ़ाएं.
चरण 10.2.2.1.2
को से गुणा करें.
चरण 10.2.2.1.3
को के घात तक बढ़ाएं.
चरण 10.2.2.1.4
को से गुणा करें.
चरण 10.2.2.1.5
को से गुणा करें.
चरण 10.2.2.2
जोड़कर और घटाकर सरल करें.
चरण 10.2.2.2.1
और जोड़ें.
चरण 10.2.2.2.2
और जोड़ें.
चरण 10.2.2.2.3
में से घटाएं.
चरण 10.2.2.3
अंतिम उत्तर है.
चरण 10.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.3.1
व्यंजक में चर को से बदलें.
चरण 10.3.2
परिणाम को सरल बनाएंं.
चरण 10.3.2.1
प्रत्येक पद को सरल करें.
चरण 10.3.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 10.3.2.1.2
को से गुणा करें.
चरण 10.3.2.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 10.3.2.1.4
को से गुणा करें.
चरण 10.3.2.1.5
को से गुणा करें.
चरण 10.3.2.2
जोड़कर और घटाकर सरल करें.
चरण 10.3.2.2.1
और जोड़ें.
चरण 10.3.2.2.2
और जोड़ें.
चरण 10.3.2.2.3
में से घटाएं.
चरण 10.3.2.3
अंतिम उत्तर है.
चरण 10.4
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
चरण 10.4.1
व्यंजक में चर को से बदलें.
चरण 10.4.2
परिणाम को सरल बनाएंं.
चरण 10.4.2.1
प्रत्येक पद को सरल करें.
चरण 10.4.2.1.1
को के घात तक बढ़ाएं.
चरण 10.4.2.1.2
को से गुणा करें.
चरण 10.4.2.1.3
को के घात तक बढ़ाएं.
चरण 10.4.2.1.4
को से गुणा करें.
चरण 10.4.2.1.5
को से गुणा करें.
चरण 10.4.2.2
जोड़कर और घटाकर सरल करें.
चरण 10.4.2.2.1
और जोड़ें.
चरण 10.4.2.2.2
में से घटाएं.
चरण 10.4.2.2.3
में से घटाएं.
चरण 10.4.2.3
अंतिम उत्तर है.
चरण 10.5
चूँकि पहले व्युत्पन्न ने के आसपास के संकेतों को नहीं बदला, यह स्थानीय अधिकतम या न्यूनतम नहीं है.
स्थानीय अधिकतम या न्यूनतम नहीं
चरण 10.6
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 11