कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=2x^4-4x^2
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को से गुणा करें.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
को से गुणा करें.
चरण 4.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
को से गुणा करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
में से का गुणनखंड करें.
चरण 5.2.1.2
में से का गुणनखंड करें.
चरण 5.2.1.3
में से का गुणनखंड करें.
चरण 5.2.2
को के रूप में फिर से लिखें.
चरण 5.2.3
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.3.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 5.2.3.2
अनावश्यक कोष्ठक हटा दें.
चरण 5.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.4
को के बराबर सेट करें.
चरण 5.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
को के बराबर सेट करें.
चरण 5.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.6.1
को के बराबर सेट करें.
चरण 5.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.2
को से गुणा करें.
चरण 9.2
में से घटाएं.
चरण 10
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 11.2.1.2
को से गुणा करें.
चरण 11.2.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 11.2.1.4
को से गुणा करें.
चरण 11.2.2
और जोड़ें.
चरण 11.2.3
अंतिम उत्तर है.
चरण 12
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 13
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1
को के घात तक बढ़ाएं.
चरण 13.1.2
को से गुणा करें.
चरण 13.2
में से घटाएं.
चरण 14
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 15
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 15.1
व्यंजक में चर को से बदलें.
चरण 15.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1.1
को के घात तक बढ़ाएं.
चरण 15.2.1.2
को से गुणा करें.
चरण 15.2.1.3
को के घात तक बढ़ाएं.
चरण 15.2.1.4
को से गुणा करें.
चरण 15.2.2
में से घटाएं.
चरण 15.2.3
अंतिम उत्तर है.
चरण 16
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 17
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 17.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 17.1.1
एक का कोई भी घात एक होता है.
चरण 17.1.2
को से गुणा करें.
चरण 17.2
में से घटाएं.
चरण 18
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 19
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 19.1
व्यंजक में चर को से बदलें.
चरण 19.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 19.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 19.2.1.1
एक का कोई भी घात एक होता है.
चरण 19.2.1.2
को से गुणा करें.
चरण 19.2.1.3
एक का कोई भी घात एक होता है.
चरण 19.2.1.4
को से गुणा करें.
चरण 19.2.2
में से घटाएं.
चरण 19.2.3
अंतिम उत्तर है.
चरण 20
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
एक स्थानीय निम्नत्तम है
एक स्थानीय निम्नत्तम है
चरण 21