कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=5cos(x)^2
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
की सभी घटनाओं को से बदलें.
चरण 1.3
को से गुणा करें.
चरण 1.4
के संबंध में का व्युत्पन्न है.
चरण 1.5
को से गुणा करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3
के संबंध में का व्युत्पन्न है.
चरण 2.4
को के घात तक बढ़ाएं.
चरण 2.5
को के घात तक बढ़ाएं.
चरण 2.6
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.7
और जोड़ें.
चरण 2.8
के संबंध में का व्युत्पन्न है.
चरण 2.9
को के घात तक बढ़ाएं.
चरण 2.10
को के घात तक बढ़ाएं.
चरण 2.11
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.12
और जोड़ें.
चरण 2.13
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.13.1
वितरण गुणधर्म लागू करें.
चरण 2.13.2
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
चरण 5.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
का सटीक मान है.
चरण 5.2.3
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 5.2.4
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 5.2.4.2
न्यूमेरेटरों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.4.2.1
और को मिलाएं.
चरण 5.2.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 5.2.4.3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.4.3.1
को से गुणा करें.
चरण 5.2.4.3.2
में से घटाएं.
चरण 5.2.5
समीकरण का हल .
चरण 6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
को के बराबर सेट करें.
चरण 6.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 6.2.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.2.2.1
का सटीक मान है.
चरण 6.2.3
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 6.2.4
में से घटाएं.
चरण 6.2.5
समीकरण का हल .
चरण 7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
का सटीक मान है.
चरण 9.1.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.3
को से गुणा करें.
चरण 9.1.4
का सटीक मान है.
चरण 9.1.5
एक का कोई भी घात एक होता है.
चरण 9.1.6
को से गुणा करें.
चरण 9.2
और जोड़ें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
का सटीक मान है.
चरण 11.2.2
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 11.2.3
को से गुणा करें.
चरण 11.2.4
अंतिम उत्तर है.
चरण 12
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 13
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 13.1.2
का सटीक मान है.
चरण 13.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 13.1.4
को से गुणा करें.
चरण 13.1.5
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि चौथे चतुर्थांश में ज्या ऋणात्मक है.
चरण 13.1.6
का सटीक मान है.
चरण 13.1.7
को से गुणा करें.
चरण 13.1.8
को के घात तक बढ़ाएं.
चरण 13.1.9
को से गुणा करें.
चरण 13.2
और जोड़ें.
चरण 14
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 15
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 15.1
व्यंजक में चर को से बदलें.
चरण 15.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 15.2.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 15.2.2
का सटीक मान है.
चरण 15.2.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 15.2.4
को से गुणा करें.
चरण 15.2.5
अंतिम उत्तर है.
चरण 16
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 17
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 17.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 17.1.1
का सटीक मान है.
चरण 17.1.2
एक का कोई भी घात एक होता है.
चरण 17.1.3
को से गुणा करें.
चरण 17.1.4
का सटीक मान है.
चरण 17.1.5
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 17.1.6
को से गुणा करें.
चरण 17.2
और जोड़ें.
चरण 18
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 19
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 19.1
व्यंजक में चर को से बदलें.
चरण 19.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 19.2.1
का सटीक मान है.
चरण 19.2.2
एक का कोई भी घात एक होता है.
चरण 19.2.3
को से गुणा करें.
चरण 19.2.4
अंतिम उत्तर है.
चरण 20
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 21
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 21.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 21.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 21.1.2
का सटीक मान है.
चरण 21.1.3
को से गुणा करें.
चरण 21.1.4
को के घात तक बढ़ाएं.
चरण 21.1.5
को से गुणा करें.
चरण 21.1.6
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 21.1.7
का सटीक मान है.
चरण 21.1.8
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 21.1.9
को से गुणा करें.
चरण 21.2
और जोड़ें.
चरण 22
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 23
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 23.1
व्यंजक में चर को से बदलें.
चरण 23.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 23.2.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 23.2.2
का सटीक मान है.
चरण 23.2.3
को से गुणा करें.
चरण 23.2.4
को के घात तक बढ़ाएं.
चरण 23.2.5
को से गुणा करें.
चरण 23.2.6
अंतिम उत्तर है.
चरण 24
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
एक स्थानीय निम्नत्तम है
एक स्थानीय उच्चत्तम है
एक स्थानीय उच्चत्तम है
चरण 25