कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=x^4(x-24)^2
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
को के रूप में फिर से लिखें.
चरण 1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
वितरण गुणधर्म लागू करें.
चरण 1.2.2
वितरण गुणधर्म लागू करें.
चरण 1.2.3
वितरण गुणधर्म लागू करें.
चरण 1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1.1
को से गुणा करें.
चरण 1.3.1.2
को के बाईं ओर ले जाएं.
चरण 1.3.1.3
को से गुणा करें.
चरण 1.3.2
में से घटाएं.
चरण 1.4
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.5
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.5
को से गुणा करें.
चरण 1.5.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.5.7
और जोड़ें.
चरण 1.5.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.5.9
को के बाईं ओर ले जाएं.
चरण 1.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
वितरण गुणधर्म लागू करें.
चरण 1.6.2
वितरण गुणधर्म लागू करें.
चरण 1.6.3
वितरण गुणधर्म लागू करें.
चरण 1.6.4
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.1.1
ले जाएं.
चरण 1.6.4.1.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.1.2.1
को के घात तक बढ़ाएं.
चरण 1.6.4.1.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.6.4.1.3
और जोड़ें.
चरण 1.6.4.2
को के बाईं ओर ले जाएं.
चरण 1.6.4.3
को के बाईं ओर ले जाएं.
चरण 1.6.4.4
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.4.1
ले जाएं.
चरण 1.6.4.4.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.6.4.4.3
और जोड़ें.
चरण 1.6.4.5
को से गुणा करें.
चरण 1.6.4.6
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.6.1
ले जाएं.
चरण 1.6.4.6.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.4.6.2.1
को के घात तक बढ़ाएं.
चरण 1.6.4.6.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.6.4.6.3
और जोड़ें.
चरण 1.6.4.7
को से गुणा करें.
चरण 1.6.4.8
और जोड़ें.
चरण 1.6.4.9
में से घटाएं.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 2.4
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4.3
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
को के रूप में फिर से लिखें.
चरण 4.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
वितरण गुणधर्म लागू करें.
चरण 4.1.2.2
वितरण गुणधर्म लागू करें.
चरण 4.1.2.3
वितरण गुणधर्म लागू करें.
चरण 4.1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1.1
को से गुणा करें.
चरण 4.1.3.1.2
को के बाईं ओर ले जाएं.
चरण 4.1.3.1.3
को से गुणा करें.
चरण 4.1.3.2
में से घटाएं.
चरण 4.1.4
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.5
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.5.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.5.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.3
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.5.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.5
को से गुणा करें.
चरण 4.1.5.6
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.5.7
और जोड़ें.
चरण 4.1.5.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.5.9
को के बाईं ओर ले जाएं.
चरण 4.1.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.1
वितरण गुणधर्म लागू करें.
चरण 4.1.6.2
वितरण गुणधर्म लागू करें.
चरण 4.1.6.3
वितरण गुणधर्म लागू करें.
चरण 4.1.6.4
पदों को मिलाएं.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.1
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.1.1
ले जाएं.
चरण 4.1.6.4.1.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.1.2.1
को के घात तक बढ़ाएं.
चरण 4.1.6.4.1.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.1.6.4.1.3
और जोड़ें.
चरण 4.1.6.4.2
को के बाईं ओर ले जाएं.
चरण 4.1.6.4.3
को के बाईं ओर ले जाएं.
चरण 4.1.6.4.4
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.4.1
ले जाएं.
चरण 4.1.6.4.4.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.1.6.4.4.3
और जोड़ें.
चरण 4.1.6.4.5
को से गुणा करें.
चरण 4.1.6.4.6
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.6.1
ले जाएं.
चरण 4.1.6.4.6.2
को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.6.4.6.2.1
को के घात तक बढ़ाएं.
चरण 4.1.6.4.6.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 4.1.6.4.6.3
और जोड़ें.
चरण 4.1.6.4.7
को से गुणा करें.
चरण 4.1.6.4.8
और जोड़ें.
चरण 4.1.6.4.9
में से घटाएं.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1.1
में से का गुणनखंड करें.
चरण 5.2.1.2
में से का गुणनखंड करें.
चरण 5.2.1.3
में से का गुणनखंड करें.
चरण 5.2.1.4
में से का गुणनखंड करें.
चरण 5.2.1.5
में से का गुणनखंड करें.
चरण 5.2.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 5.2.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 5.2.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 5.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
को के बराबर सेट करें.
चरण 5.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.4.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.2.1
को के रूप में फिर से लिखें.
चरण 5.4.2.2.2
वास्तविक संख्या मानकर, करणी के अंतर्गत से पदों को बाहर निकालें.
चरण 5.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
को के बराबर सेट करें.
चरण 5.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.6.1
को के बराबर सेट करें.
चरण 5.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.4
को से गुणा करें.
चरण 9.1.5
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.1.6
को से गुणा करें.
चरण 9.2
संख्याओं को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 9.2.1
और जोड़ें.
चरण 9.2.2
और जोड़ें.
चरण 10
चूँकि या अपरिभाषित दूसरा व्युत्पन्न के साथ कम से कम एक बिंदु है, इसलिए पहला व्युत्पन्न परीक्षण लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 10.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.2.1
व्यंजक में चर को से बदलें.
चरण 10.2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.1.1
को के घात तक बढ़ाएं.
चरण 10.2.2.1.2
को से गुणा करें.
चरण 10.2.2.1.3
को के घात तक बढ़ाएं.
चरण 10.2.2.1.4
को से गुणा करें.
चरण 10.2.2.1.5
को के घात तक बढ़ाएं.
चरण 10.2.2.1.6
को से गुणा करें.
चरण 10.2.2.2
संख्याओं को घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.2.2.2.1
में से घटाएं.
चरण 10.2.2.2.2
में से घटाएं.
चरण 10.2.2.3
अंतिम उत्तर है.
चरण 10.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.3.1
व्यंजक में चर को से बदलें.
चरण 10.3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.1.1
को के घात तक बढ़ाएं.
चरण 10.3.2.1.2
को से गुणा करें.
चरण 10.3.2.1.3
को के घात तक बढ़ाएं.
चरण 10.3.2.1.4
को से गुणा करें.
चरण 10.3.2.1.5
को के घात तक बढ़ाएं.
चरण 10.3.2.1.6
को से गुणा करें.
चरण 10.3.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.3.2.2.1
में से घटाएं.
चरण 10.3.2.2.2
और जोड़ें.
चरण 10.3.2.3
अंतिम उत्तर है.
चरण 10.4
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.4.1
व्यंजक में चर को से बदलें.
चरण 10.4.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.4.2.1.1
को के घात तक बढ़ाएं.
चरण 10.4.2.1.2
को से गुणा करें.
चरण 10.4.2.1.3
को के घात तक बढ़ाएं.
चरण 10.4.2.1.4
को से गुणा करें.
चरण 10.4.2.1.5
को के घात तक बढ़ाएं.
चरण 10.4.2.1.6
को से गुणा करें.
चरण 10.4.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.4.2.2.1
में से घटाएं.
चरण 10.4.2.2.2
और जोड़ें.
चरण 10.4.2.3
अंतिम उत्तर है.
चरण 10.5
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 10.5.1
व्यंजक में चर को से बदलें.
चरण 10.5.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 10.5.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.5.2.1.1
को के घात तक बढ़ाएं.
चरण 10.5.2.1.2
को से गुणा करें.
चरण 10.5.2.1.3
को के घात तक बढ़ाएं.
चरण 10.5.2.1.4
को से गुणा करें.
चरण 10.5.2.1.5
को के घात तक बढ़ाएं.
चरण 10.5.2.1.6
को से गुणा करें.
चरण 10.5.2.2
जोड़कर और घटाकर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.5.2.2.1
में से घटाएं.
चरण 10.5.2.2.2
और जोड़ें.
चरण 10.5.2.3
अंतिम उत्तर है.
चरण 10.6
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 10.7
चूँकि पहले व्युत्पन्न ने संकेतों को धनात्मक से ऋणात्मक में के लगभग बदल दिया, तो एक स्थानीय अधिकतम है.
एक स्थानीय अधिकतम है.
चरण 10.8
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 10.9
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय न्यूनतम है.
एक स्थानीय अधिकतम है.
एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
एक स्थानीय अधिकतम है.
एक स्थानीय न्यूनतम है.
चरण 11