समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
चरण 2.1
अवकलन करें.
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2
का मान ज्ञात करें.
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3
पदों को पुन: व्यवस्थित करें
चरण 3
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
का मान ज्ञात करें.
चरण 3.2.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.2.2
को के रूप में फिर से लिखें.
चरण 3.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.5
को से गुणा करें.
चरण 3.2.6
को से गुणा करें.
चरण 3.2.7
को से गुणा करें.
चरण 3.2.8
और जोड़ें.
चरण 3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4
सरल करें.
चरण 3.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 3.4.2
और जोड़ें.
चरण 4
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 5
चरण 5.1
पहला व्युत्पन्न पता करें.
चरण 5.1.1
अवकलन करें.
चरण 5.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.2
का मान ज्ञात करें.
चरण 5.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.2.2
के संबंध में का व्युत्पन्न है.
चरण 5.1.3
पदों को पुन: व्यवस्थित करें
चरण 5.2
का पहला व्युत्पन्न बटे , है.
चरण 6
चरण 6.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.3
समीकरण के पदों का LCD पता करें.
चरण 6.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 6.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 6.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
चरण 6.4.1
के प्रत्येक पद को से गुणा करें.
चरण 6.4.2
बाईं ओर को सरल बनाएंं.
चरण 6.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.4.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 6.4.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.4.2.1.3
व्यंजक को फिर से लिखें.
चरण 6.5
समीकरण को हल करें.
चरण 6.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 6.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 6.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.5.2.2
बाईं ओर को सरल बनाएंं.
चरण 6.5.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 6.5.2.2.2
को से विभाजित करें.
चरण 6.5.2.3
दाईं ओर को सरल बनाएंं.
चरण 6.5.2.3.1
को से विभाजित करें.
चरण 7
चरण 7.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 8
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 9
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 10
चरण 10.1
एक का कोई भी घात एक होता है.
चरण 10.2
को से विभाजित करें.
चरण 11
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 12
चरण 12.1
व्यंजक में चर को से बदलें.
चरण 12.2
परिणाम को सरल बनाएंं.
चरण 12.2.1
प्रत्येक पद को सरल करें.
चरण 12.2.1.1
का प्राकृतिक लघुगणक है.
चरण 12.2.1.2
को से गुणा करें.
चरण 12.2.2
और जोड़ें.
चरण 12.2.3
अंतिम उत्तर है.
चरण 13
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 14