कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। y=x- x का प्राकृतिक लघुगणक
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3
पदों को पुन: व्यवस्थित करें
चरण 3
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 3.2.2
को के रूप में फिर से लिखें.
चरण 3.2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.4
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.5
को से गुणा करें.
चरण 3.2.6
को से गुणा करें.
चरण 3.2.7
को से गुणा करें.
चरण 3.2.8
और जोड़ें.
चरण 3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.4
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 3.4.2
और जोड़ें.
चरण 4
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 5
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
अवकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.1.1.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.2.2
के संबंध में का व्युत्पन्न है.
चरण 5.1.3
पदों को पुन: व्यवस्थित करें
चरण 5.2
का पहला व्युत्पन्न बटे , है.
चरण 6
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.3
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 6.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 6.3.2
एक और किसी भी व्यंजक का LCM (लघुत्तम समापवर्तक) व्यंजक है.
चरण 6.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
के प्रत्येक पद को से गुणा करें.
चरण 6.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.1.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 6.4.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.4.2.1.3
व्यंजक को फिर से लिखें.
चरण 6.5
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 6.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.5.2.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 6.5.2.2.2
को से विभाजित करें.
चरण 6.5.2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.5.2.3.1
को से विभाजित करें.
चरण 7
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 7.1
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 8
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 9
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 10
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
एक का कोई भी घात एक होता है.
चरण 10.2
को से विभाजित करें.
चरण 11
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 12
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
व्यंजक में चर को से बदलें.
चरण 12.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 12.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 12.2.1.1
का प्राकृतिक लघुगणक है.
चरण 12.2.1.2
को से गुणा करें.
चरण 12.2.2
और जोड़ें.
चरण 12.2.3
अंतिम उत्तर है.
चरण 13
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 14