कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। y=15x^4+20x^3
चरण 1
को एक फलन के रूप में लिखें.
चरण 2
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.3
को से गुणा करें.
चरण 2.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.3
को से गुणा करें.
चरण 3
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 3.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.2.3
को से गुणा करें.
चरण 3.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 3.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 3.3.3
को से गुणा करें.
चरण 4
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 5
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 5.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.2.3
को से गुणा करें.
चरण 5.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 5.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 5.1.3.3
को से गुणा करें.
चरण 5.2
का पहला व्युत्पन्न बटे , है.
चरण 6
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 6.2
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 6.2.1
में से का गुणनखंड करें.
चरण 6.2.2
में से का गुणनखंड करें.
चरण 6.2.3
में से का गुणनखंड करें.
चरण 6.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 6.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.1
को के बराबर सेट करें.
चरण 6.4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 6.4.2.2
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.4.2.2.1
को के रूप में फिर से लिखें.
चरण 6.4.2.2.2
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 6.4.2.2.3
जोड़ या घटाव , है.
चरण 6.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 6.5.1
को के बराबर सेट करें.
चरण 6.5.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 6.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 7
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 7.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 8
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 9
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 10
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 10.1.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 10.1.2
को से गुणा करें.
चरण 10.1.3
को से गुणा करें.
चरण 10.2
और जोड़ें.
चरण 11
चूँकि या अपरिभाषित दूसरा व्युत्पन्न के साथ कम से कम एक बिंदु है, इसलिए पहला व्युत्पन्न परीक्षण लागू करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
को मानों के लगभग अलग-अलग अंतराल में विभाजित करें जो पहले व्युत्पन्न या अपरिभाषित बनाते हैं.
चरण 11.2
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
व्यंजक में चर को से बदलें.
चरण 11.2.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.2.1.1
को के घात तक बढ़ाएं.
चरण 11.2.2.1.2
को से गुणा करें.
चरण 11.2.2.1.3
को के घात तक बढ़ाएं.
चरण 11.2.2.1.4
को से गुणा करें.
चरण 11.2.2.2
और जोड़ें.
चरण 11.2.2.3
अंतिम उत्तर है.
चरण 11.3
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 11.3.1
व्यंजक में चर को से बदलें.
चरण 11.3.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.3.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.3.2.1.1
को के घात तक बढ़ाएं.
चरण 11.3.2.1.2
को से गुणा करें.
चरण 11.3.2.1.3
को के घात तक बढ़ाएं.
चरण 11.3.2.1.4
को से गुणा करें.
चरण 11.3.2.2
और जोड़ें.
चरण 11.3.2.3
अंतिम उत्तर है.
चरण 11.4
पहले व्युत्पन्न में अंतराल से कोई भी संख्या, जैसे को यह जांचने के लिए प्रतिस्थापित करें कि परिणाम ऋणात्मक या धनात्मक है.
और स्टेप्स के लिए टैप करें…
चरण 11.4.1
व्यंजक में चर को से बदलें.
चरण 11.4.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.4.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.4.2.1.1
को के घात तक बढ़ाएं.
चरण 11.4.2.1.2
को से गुणा करें.
चरण 11.4.2.1.3
को के घात तक बढ़ाएं.
चरण 11.4.2.1.4
को से गुणा करें.
चरण 11.4.2.2
और जोड़ें.
चरण 11.4.2.3
अंतिम उत्तर है.
चरण 11.5
चूँकि पहले व्युत्पन्न ने संकेतों को ऋणात्मक से धनात्मक में के लगभग बदल दिया, तो एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 11.6
चूँकि पहले व्युत्पन्न ने के आसपास के संकेतों को नहीं बदला, यह स्थानीय अधिकतम या न्यूनतम नहीं है.
स्थानीय अधिकतम या न्यूनतम नहीं
चरण 11.7
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय न्यूनतम है.
एक स्थानीय न्यूनतम है.
चरण 12