कैलकुलस उदाहरण

स्थानीय अधिकतम और न्यूनतम ज्ञात कीजिये। f(x)=1/4x^4-x
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
और को मिलाएं.
चरण 1.2.4
और को मिलाएं.
चरण 1.2.5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.5.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.5.2
को से विभाजित करें.
चरण 1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
को से गुणा करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.4
और जोड़ें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
और को मिलाएं.
चरण 4.1.2.4
और को मिलाएं.
चरण 4.1.2.5
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.2.5.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.1.2.5.2
को से विभाजित करें.
चरण 4.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
को से गुणा करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
पहले व्युत्पन्न को के बराबर सेट करें, फिर समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 5.4
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
को के रूप में फिर से लिखें.
चरण 5.4.2
चूंकि दोनों पद पूर्ण घन हैं, घन सूत्र के अंतर का उपयोग करने वाले गुणनखंड जहाँ और हैं.
चरण 5.4.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.3.1
को से गुणा करें.
चरण 5.4.3.2
एक का कोई भी घात एक होता है.
चरण 5.5
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.6.1
को के बराबर सेट करें.
चरण 5.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.1
को के बराबर सेट करें.
चरण 5.7.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.1
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 5.7.2.2
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 5.7.2.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.3.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.3.1.1
एक का कोई भी घात एक होता है.
चरण 5.7.2.3.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.3.1.2.1
को से गुणा करें.
चरण 5.7.2.3.1.2.2
को से गुणा करें.
चरण 5.7.2.3.1.3
में से घटाएं.
चरण 5.7.2.3.1.4
को के रूप में फिर से लिखें.
चरण 5.7.2.3.1.5
को के रूप में फिर से लिखें.
चरण 5.7.2.3.1.6
को के रूप में फिर से लिखें.
चरण 5.7.2.3.2
को से गुणा करें.
चरण 5.7.2.4
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.4.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.4.1.1
एक का कोई भी घात एक होता है.
चरण 5.7.2.4.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.4.1.2.1
को से गुणा करें.
चरण 5.7.2.4.1.2.2
को से गुणा करें.
चरण 5.7.2.4.1.3
में से घटाएं.
चरण 5.7.2.4.1.4
को के रूप में फिर से लिखें.
चरण 5.7.2.4.1.5
को के रूप में फिर से लिखें.
चरण 5.7.2.4.1.6
को के रूप में फिर से लिखें.
चरण 5.7.2.4.2
को से गुणा करें.
चरण 5.7.2.4.3
को में बदलें.
चरण 5.7.2.4.4
को के रूप में फिर से लिखें.
चरण 5.7.2.4.5
में से का गुणनखंड करें.
चरण 5.7.2.4.6
में से का गुणनखंड करें.
चरण 5.7.2.4.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5.7.2.5
के भाग को हल करने के लिए व्यंजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.5.1.1
एक का कोई भी घात एक होता है.
चरण 5.7.2.5.1.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 5.7.2.5.1.2.1
को से गुणा करें.
चरण 5.7.2.5.1.2.2
को से गुणा करें.
चरण 5.7.2.5.1.3
में से घटाएं.
चरण 5.7.2.5.1.4
को के रूप में फिर से लिखें.
चरण 5.7.2.5.1.5
को के रूप में फिर से लिखें.
चरण 5.7.2.5.1.6
को के रूप में फिर से लिखें.
चरण 5.7.2.5.2
को से गुणा करें.
चरण 5.7.2.5.3
को में बदलें.
चरण 5.7.2.5.4
को के रूप में फिर से लिखें.
चरण 5.7.2.5.5
में से का गुणनखंड करें.
चरण 5.7.2.5.6
में से का गुणनखंड करें.
चरण 5.7.2.5.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 5.7.2.6
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 5.8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
वे मान ज्ञात करें जहाँ व्युत्पन्न अपरिभाषित है.
और स्टेप्स के लिए टैप करें…
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 9.1
एक का कोई भी घात एक होता है.
चरण 9.2
को से गुणा करें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.1.1
एक का कोई भी घात एक होता है.
चरण 11.2.1.2
को से गुणा करें.
चरण 11.2.1.3
को से गुणा करें.
चरण 11.2.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 11.2.3
और को मिलाएं.
चरण 11.2.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 11.2.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.2.5.1
को से गुणा करें.
चरण 11.2.5.2
में से घटाएं.
चरण 11.2.6
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 11.2.7
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 13