समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 1.3
अवकलन करें.
चरण 1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.3.4
व्यंजक को सरल बनाएंं.
चरण 1.3.4.1
और जोड़ें.
चरण 1.3.4.2
को से गुणा करें.
चरण 1.4
सरल करें.
चरण 1.4.1
वितरण गुणधर्म लागू करें.
चरण 1.4.2
पदों को मिलाएं.
चरण 1.4.2.1
को के रूप में फिर से लिखें.
चरण 1.4.2.2
और जोड़ें.
चरण 1.4.2.3
और जोड़ें.
चरण 1.4.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 1.4.4
गुणनखंडों को में पुन: क्रमित करें.
चरण 2
चरण 2.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 2.3
घात नियम का उपयोग करके अवकलन करें.
चरण 2.3.1
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.2
को से गुणा करें.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
गुणनफल नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 4.1.2
चरघातांकी नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ = है.
चरण 4.1.3
अवकलन करें.
चरण 4.1.3.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.3.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.3.4
व्यंजक को सरल बनाएंं.
चरण 4.1.3.4.1
और जोड़ें.
चरण 4.1.3.4.2
को से गुणा करें.
चरण 4.1.4
सरल करें.
चरण 4.1.4.1
वितरण गुणधर्म लागू करें.
चरण 4.1.4.2
पदों को मिलाएं.
चरण 4.1.4.2.1
को के रूप में फिर से लिखें.
चरण 4.1.4.2.2
और जोड़ें.
चरण 4.1.4.2.3
और जोड़ें.
चरण 4.1.4.3
के गुणनखंडों को फिर से क्रमित करें.
चरण 4.1.4.4
गुणनखंडों को में पुन: क्रमित करें.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 5.3
को के बराबर सेट करें.
चरण 5.4
को के बराबर सेट करें और के लिए हल करें.
चरण 5.4.1
को के बराबर सेट करें.
चरण 5.4.2
के लिए हल करें.
चरण 5.4.2.1
घातांक से चर को हटाने के लिए समीकरण के दोनों पक्षों का प्राकृतिक लघुगणक लें.
चरण 5.4.2.2
समीकरण हल नहीं किया जा सकता क्योंकि अपरिभाषित है.
अपरिभाषित
चरण 5.4.2.3
का कोई हल नहीं है
कोई हल नहीं
कोई हल नहीं
कोई हल नहीं
चरण 5.5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6
चरण 6.1
व्यंजक का डोमेन सभी वास्तविक संख्याएँ हैं सिवाय जहाँ व्यंजक अपरिभाषित है. इस स्थिति में, कोई वास्तविक संख्या नहीं है जो व्यंजक को अपरिभाषित बनाती है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
प्रत्येक पद को सरल करें.
चरण 9.1.1
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 9.1.2
को से गुणा करें.
चरण 9.1.3
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 9.2
और जोड़ें.
चरण 10
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 11
चरण 11.1
व्यंजक में चर को से बदलें.
चरण 11.2
परिणाम को सरल बनाएंं.
चरण 11.2.1
में से घटाएं.
चरण 11.2.2
तक बढ़ाई गई कोई भी चीज़ होती है.
चरण 11.2.3
को से गुणा करें.
चरण 11.2.4
अंतिम उत्तर है.
चरण 12
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय निम्नत्तम है
चरण 13