समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
अवकलन करें.
चरण 1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 1.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2
का मान ज्ञात करें.
चरण 1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 1.2.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 1.2.4
और को मिलाएं.
चरण 1.2.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 1.2.6
न्यूमेरेटर को सरल करें.
चरण 1.2.6.1
को से गुणा करें.
चरण 1.2.6.2
में से घटाएं.
चरण 1.2.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 1.2.8
और को मिलाएं.
चरण 1.2.9
और को मिलाएं.
चरण 1.2.10
को से गुणा करें.
चरण 1.2.11
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 1.3
सरल करें.
चरण 1.3.1
और जोड़ें.
चरण 1.3.2
में से का गुणनखंड करें.
चरण 1.3.3
में से का गुणनखंड करें.
चरण 1.3.4
अलग-अलग भिन्न
चरण 1.3.5
को से विभाजित करें.
चरण 1.3.6
और को मिलाएं.
चरण 2
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
घातांक के बुनियादी नियम लागू करें.
चरण 2.2.1
को के रूप में फिर से लिखें.
चरण 2.2.2
घातांक को में गुणा करें.
चरण 2.2.2.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.2.2.2
और को मिलाएं.
चरण 2.2.2.3
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.3
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.4
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.5
और को मिलाएं.
चरण 2.6
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.7
न्यूमेरेटर को सरल करें.
चरण 2.7.1
को से गुणा करें.
चरण 2.7.2
में से घटाएं.
चरण 2.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.9
और को मिलाएं.
चरण 2.10
को से गुणा करें.
चरण 2.11
और को मिलाएं.
चरण 2.12
व्यंजक को सरल बनाएंं.
चरण 2.12.1
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 2.12.2
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
चरण 4.1
पहला व्युत्पन्न पता करें.
चरण 4.1.1
अवकलन करें.
चरण 4.1.1.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 4.1.1.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2
का मान ज्ञात करें.
चरण 4.1.2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 4.1.2.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 4.1.2.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 4.1.2.4
और को मिलाएं.
चरण 4.1.2.5
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 4.1.2.6
न्यूमेरेटर को सरल करें.
चरण 4.1.2.6.1
को से गुणा करें.
चरण 4.1.2.6.2
में से घटाएं.
चरण 4.1.2.7
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4.1.2.8
और को मिलाएं.
चरण 4.1.2.9
और को मिलाएं.
चरण 4.1.2.10
को से गुणा करें.
चरण 4.1.2.11
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 4.1.3
सरल करें.
चरण 4.1.3.1
और जोड़ें.
चरण 4.1.3.2
में से का गुणनखंड करें.
चरण 4.1.3.3
में से का गुणनखंड करें.
चरण 4.1.3.4
अलग-अलग भिन्न
चरण 4.1.3.5
को से विभाजित करें.
चरण 4.1.3.6
और को मिलाएं.
चरण 4.2
का पहला व्युत्पन्न बटे , है.
चरण 5
चरण 5.1
पहले व्युत्पन्न को के बराबर सेट करें.
चरण 5.2
न्यूमेरेटर को शून्य के बराबर सेट करें.
चरण 5.3
के बाद से कोई हल नहीं है.
कोई हल नहीं
कोई हल नहीं
चरण 6
चरण 6.1
भिन्नात्मक घातांक वाले व्यंजकों को करणी में बदलें.
चरण 6.1.1
घातांक को मूलक के रूप में फिर से लिखने के लिए नियम लागू करें.
चरण 6.1.2
किसी भी चीज़ को तक बढ़ा दिया जाता है, वह आधार ही होता है.
चरण 6.2
में भाजक को के बराबर सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6.3
के लिए हल करें.
चरण 6.3.1
समीकरण के बाईं पक्ष के करणी को हटाने के लिए, समीकरण के दोनों पक्षों को के घात तक बढ़ाएँ.
चरण 6.3.2
समीकरण के प्रत्येक पक्ष को सरल करें.
चरण 6.3.2.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 6.3.2.2
बाईं ओर को सरल बनाएंं.
चरण 6.3.2.2.1
को सरल करें.
चरण 6.3.2.2.1.1
घातांक को में गुणा करें.
चरण 6.3.2.2.1.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 6.3.2.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.2.1.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.2.1.1.2.2
व्यंजक को फिर से लिखें.
चरण 6.3.2.2.1.2
सरल करें.
चरण 6.3.2.3
दाईं ओर को सरल बनाएंं.
चरण 6.3.2.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 6.4
रेडिकैंड को में से कम में सेट करें ताकि यह पता लगाया जा सके कि व्यंजक कहां अपरिभाषित है.
चरण 6.5
समीकरण अपरिभाषित है जहाँ भाजक के बराबर है, एक वर्गमूल का तर्क से कम है या एक लघुगणक का तर्क से कम या उसके बराबर है.
चरण 7
मूल्यांकन के लिए क्रांतिक बिन्दु.
चरण 8
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 9
चरण 9.1
व्यंजक को सरल बनाएंं.
चरण 9.1.1
को के रूप में फिर से लिखें.
चरण 9.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 9.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 9.2.2
व्यंजक को फिर से लिखें.
चरण 9.3
व्यंजक को सरल बनाएंं.
चरण 9.3.1
को किसी भी धनात्मक घात तक बढ़ाने से प्राप्त होता है.
चरण 9.3.2
को से गुणा करें.
चरण 9.3.3
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
चरण 9.4
व्यंजक में से एक भाग होता है. व्यंजक अपरिभाषित है.
अपरिभाषित
अपरिभाषित
चरण 10
चूँकि पहला व्युत्पन्न परीक्षण विफल रहा, इसलिए कोई स्थानीय एक्सट्रीमा नहीं है.
कोई स्थानीय उच्चत्तम मान नहीं
चरण 11